

The Information Retrieval Series

Series Editor

W. Bruce Croft

Sándor Dominich

The Modern Algebra
of Information Retrieval

123

Sándor Dominich
Computer Science Department
University of Pannonia
Egyetem u. 10.
8200 Veszprém, Hungary
dominich@dcs.vein.hu

ISBN: 978-3-540-77658-1 e-ISBN: 978-3-540-77659-8

Library of Congress Control Number: 2008922292

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover Design: KünkelLopka, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

ACM Computing Classification (1998): H.3, G.1, G.3

To my parents Jolán and Sándor
To my wife Em ke and our daughter Em ke

Acknowledgments

Special thanks, first, to my family, the two Em ke, who were very under-
standing during the entire time I was involved in writing this book.

Next, I would like to thank Ferenc Friedler, the head of the Department of
Computer Science, University of Pannonia (Veszprém, Hungary), for pro-
viding a highly supportive environment.

At some stages I derived much benefit from discussions with the following
colleagues: Rozália Piglerné Lakner, Tamás Kiezer, Júlia Góth (all from
the University of Pannonia, Veszprém, Hungary), Iadh Ounis (Glasgow
University, Glasgow, Scotland, U.K.) and I enjoyed their active support.

Parts of this book were included in a B.Sc. curriculum on Information Re-
trieval (Faculty of Information Technology, University of Pannonia, Hun-
gary). The experience thus gained as well as students’ feedback proved
very helpful, especially for elaborating examples and proposed problems,
and in presenting methods.

May all find here my expression of gratitude.

Last but not least, I am indebted to Springer-Verlag Gmbh for making the
publication of this book possible.

Sándor Dominich

Contents

1 Introduction..1
1.1 Information Retrieval ...2

 1.1.1 Brief History of Information Retrieval..................................2
 1.1.2 “Definition” of Information Retrieval7

1.2 Retrieval Methods ..11
1.3 Modern Algebra ...13

 1.3.1 Equations ...13
 1.3.2 Solving by Radicals...14
 1.3.3 Birth of Modern Algebra ...16
 1.3.4 Modern Algebra...18

1.4 Lattice...19
1.5 Importance of Lattices..21
1.6 Lattices in Information Retrieval..22

 1.6.1 Retrieval Systems ..22
 1.6.2 Boolean Retrieval ..23
 1.6.3 Vector Space Retrieval ..23
 1.6.4 Fuzzy-Algebra-Based Retrieval Methods24
 1.6.5 Probabilistic Retrieval ...25
 1.6.6 Web Retrieval and Ranking...25

1.7 Exercises and Problems..26

2 Mathematics Basics ...27

2.1 Elements of Mathematical Logic..28
 2.1.1 Proposition...28

 2.1.2 Negation ..29
 2.1.3 Conjunction ...29
 2.1.4 Disjunction ..30
 2.1.5 Implication...30
 2.1.6 Equivalence ...31
2.2 Elements of Set Theory ..32
 2.2.1 Set..32
 2.2.2 Subset ..33
 2.2.3 Equality of Sets ...34

 2.2.4 Set Union...34
 2.2.5 Set Intersection ..35
 2.2.6 Set Difference..35
 2.2.7 Cartesian Product...36
 2.2.8 Set Complement ..37
 2.2.9 Powerset ..37
 2.2.10 Cardinality of Set...37
 2.2.11 Properties of Set Operations ..38
2.3 Elements of Relations Theory ..38
 2.3.1 Binary Relations ..39
 2.3.2 Function...40
 2.3.3 Predicate ..41
 2.3.4 Equivalence Relation...41
 2.3.5 Ordering Relation ..42
 2.3.6 Partially Ordered Set ...42
 2.3.7 Partition ...42
2.4 Exercises and Problems..43
2.5 Bibliography...44

3 Elements of Lattice Theory..45

3.1 Lattice...46
3.2 Lattice and Poset ..47
3.3 Duality ..48
3.4 Hasse Diagram ...48
3.5 Complete, Atomic Lattice ..50
3.6 Modular Lattice ..51
3.7 Sublattice ..53
3.8 Distributive Lattice...53
3.9 Complemented, Orthomodular Lattice ...56
3.10 Boolean Algebra...59
3.11 Important Lattices...59
 3.11.1 Powerset Lattice ..60
 3.11.2 Lattice of Logical Propositions ...60
 3.11.3 Lattice of Logical Predicates ...60
 3.11.4 Lattice of Logical Implications..61
 3.11.5 Lattice Types ...61
3.12 Exercises and Problems..62
3.13 Bibliography...64

X Contents

4 Basics of Information Retrieval Technology...65
4.1 Documents..66
4.2 Power Law..66
4.3 Stoplist..71
4.4 Stemming..73
4.5 Inverted File Structure..74
4.6 Term-Document Matrix..76
4.7 General Architecture of a Retrieval System.................................79
4.8 Elements of Web Retrieval Technology.......................................80
 4.8.1 World Wide Web...80
 4.8.2 Major Characteristics of the Web..80
 4.8.3 General Architecture of a Web Search Engine....................84
 4.8.4 General Architecture of a Web Metasearch Engine86
4.9 Measurement of Relevance Effectiveness....................................87
 4.9.1 Relevance ..87
 4.9.2 Measures..87
 4.9.3 Precision-Recall Graph Method ..91
 4.9.4 Uncertainty of Measurement ...93
4.10 Measurement of Search Engine Effectiveness98
 4.10.1 M-L-S Method...99
 4.10.2 RP Method...102
4.11 Exercises and Problems..103

5 Lattice-Based Retrieval Systems ...105

5.1 Mooers’ Model ...106
 5.1.1 Lattice of Documents ..106
 5.1.2 Lattice of Unstructured Queries ..106
 5.1.3 Lattice of Term Hierarchies...107
 5.1.4 Lattice of Boolean Queries and Documents108
5.2 The FaIR System ..110
5.3 Galois (Concept) Lattice-Based Models.....................................112
 5.3.1 Galois (Concept) Lattice..112
 5.3.2 Term-Document Matrix and Concept Lattice113
 5.3.3 BR-Explorer System..115
 5.3.4 Rajapakse-Denham System...115
 5.3.5 The FooCA System ...116
 5.3.6 Query Refinement, Thesaurus Representation116
5.4 Properties of the Lattices Applied ..117
5.5 Exercises and Problems..123

Contents XI

6 Boolean Retrieval ..125
6.1 Boolean Retrieval Method..126
6.2 Technology of Boolean Retrieval...128
6.3 Lattice-Based Boolean Retrieval ..129
6.4 Exercises and Problems..132

7 Lattices of Subspaces and Projectors...135
7.1 Metric Space...136
7.2 Complete Metric Space ..137
7.3 Linear Space ...139
7.4 Subspace of Linear Space...141
7.5 Linear Operator ..142
7.6 Banach Space ...143
7.7 Hilbert Space ..145
7.8 Euclidean Space ...146
7.9 Projection Theorem ..147
7.10 Projector ...149
7.11 Basis of Subspace ...151
7.12 Lattice of Subspaces ...152
7.13 Exercises and Problems..153
7.14 Bibliography...154

8 Vector Space Retrieval ..157

8.1 Introduction ..158
8.2 Lattices in Vector Space Retrieval ...159
 8.2.1 Vector Space Retrieval ..159
 8.2.2 Technology of Vector Space Retrieval..............................163
8.3 Calculation of Meaning Using the Hilbert Lattice165
 8.3.1 Queries with Negation...165
 8.3.2 Queries with Disjunction...166
8.4 Compatibility of Relevance Assessments...................................167
8.5 Vector Space Retrieval: Lattice-Lattice Mapping168
8.6 Discussion ..173
 8.6.1 Query Lattice and Free Will ..173
 8.6.2 Vector Space Retrieval? ..173
 8.6.3 Vector Space Retrieval and Quantum Mechanics174
8.7 Exercises...177

XII Contents

9 Fuzzy Algebra-Based Retrieval ...179
9.1 Elements of Tensor Algebra...180
9.2 Similarity Measure and Scalar Product182
9.3 Latent Semantic Indexing Retrieval ...186
 9.3.1 Eigenvalue, Eigenvector..186
 9.3.2 Singular Value Decomposition..188
 9.3.3 Latent Semantic Indexing..188
9.4 Generalized Vector Space Retrieval...191
9.5 Principle of Invariance ...192
9.6 Elements of Fuzzy Set Theory ...193
 9.6.1 Fuzzy Set ...193
 9.6.2 Fuzzy Intersection ...195
 9.6.3 Fuzzy Union ..195
 9.6.4 Fuzzy Complement..195
 9.6.5 Fuzzy Subset..195
9.7 Retrieval Using Linear Space...196
9.8 Fuzzy Algebra-Based Retrieval Methods...................................199
 9.8.1 Fuzzy Jordan Measure...200
 9.8.2 Fuzzy Entropy Retrieval Method203
 9.8.3 Fuzzy Probability Retrieval Method..................................204
 9.8.4 Experimental Results...206
9.9 Discussion ..207
 9.9.1 More on Measures ...207
 9.9.2 More on Algebra, Entropy, and Probability208
 9.9.3 Information Retrieval and Integration Theory...................209
 9.9.4 Principle of Invariance and String Theory210
9.10 Exercises and Problems ..212

10 Probabilistic Retrieval...215

10.1 Elements of Probability Theory..216
10.2 Principles of Probabilistic Retrieval ...218
10.3 Probabilistic Retrieval Method...220
10.4 Language Model Retrieval Method..224
10.5 Lattice Theoretical Framework for Probabilistic Retrieval226
10.6 Bayesian Network Retrieval...231
10.7 Exercises...235

11 Web Retrieval and Ranking..237
11.1 Web Graph ...238
11.2 Link Structure Analysis..246

Contents XIII

11.3 The PageRank Method ...249
11.4 The HITS Method ..255
 11.4.1 Application of the HITS Method in Web Retrieval.........257
 11.4.2 Latent Semantic Indexing and HITS259
11.5 The SALSA Method...260
11.6 The Associative Interaction Method ..263
 11.6.1 Artificial Neural Networks ..263
 11.6.2 Associative Interaction Method.......................................266
 11.6.3 Application of the Associative Interaction

 Method in Web Retrieval ..270
11.7 Combined Methods ..270
 11.7.1 Similarity Merge..271
 11.7.2 Belief Network ..272
 11.7.3 Inference Network ...274
 11.7.4 Aggregated Method ...274
11.8 Lattice-Based View of Web Ranking...282
 11.8.1 Web Lattice ...282
 11.8.2 Chain ...283
 11.8.3 Ranking ...284
 11.8.4 Global Ranking..284
 11.8.5 Structure-Based Ranking...288
11.9 P2P Retrieval ..292
 11.9.1 P2P Network..292
 11.9.2 Information Retrieval ..293
 11.9.3 Lattice-Based Indexing..296
11.10 Exercises and Problems ..298

Reference ...307

Index ..321

XIV Contents

Solutions to Exercises and Problems ...301

1 Introduction

Problems worthy of attack prove
 their worth by fighting back.

(Pál Erd s)

Information retrieval (IR) is concerned with finding and returning information
stored in computers that is relevant to a user’s needs (materialized in a re-
quest or query). With the advent of the Internet and World Wide Web
(Web for short), IR has acquired tremendous practical impact as well as
theoretical importance.
 The number of IR books that have appeared in the last ten years is 70%
of the total number (approximately 30) published on the subject in all thus
far. This is a clear sign that interest in learning, teaching, researching, and
applying IR methods and theory has grown and is increasing rapidly (most
probably owing to the Internet and the World Wide Web, which are “in-
vading” practically every aspect of human activity and life).
 Most of the books published thus far are concerned with describing IR
methods and theories, and they range from classical texts (Hays 1966,
Salton 1971, van Rijsbergen 1979, Salton and McGill 1983, Korfhage
1997, Kowalski 1997, Baeza-Yates and Ribeiro-Neto 1999) to ones that
are based on linear algebra (Berry and Browne 1999, Langville and Meyer
2006), concept lattice (Koester 2006b), geometry (e.g., van Rijsbergen
2004, Widdows 2004), user modeling and context (Belew 2000, Spink and
Cole 2005, Ingwersen and Järvelin 2005), natural language processing
(Tait 2005), algorithms (Grossman and Frieder 2004), logic (Crestani et al.
1998), language modeling (Croft and Lafferty 2003), and the mathematical
axiomatic method (Dominich 2001).

The present volume differs from all of the books that have appeared thus
far in both approach and style. Retrieval methods (major proven models
and ranking techniques) and information retrieval in general are treated in
a unified manner within the one formal framework of modern algebra,
namely abstract algebraic structures (primarily lattices, but also linear
space, clans, and algebras), while keeping traditional algebraic tools (equa-
tion solving, matrix). This approach has some clear advantages:

2 1 Introduction

• It sheds new light on the very mechanism of retrieval methods (at a con-
ceptual-mathematical level).

• New properties are revealed.
• New and efficient retrieval methods can be developed.
• It allows for a very elegant treatment of IR.
• Connections with modern algebra are created for further research.

The book should be helpful for a wide range of readers from newcomers
through students and educators to researchers and system developers com-
ing from a variety of fields such as computer science, mathematics, infor-
mation science, engineering, logics, linguistics, and physics. A precise de-
scription of every method is given in detail. For every method, a complete
example is provided to enhance understanding. Every chapter, apart from
Chapters 1 and 7, ends with exercises and problems designed to convey a
deeper understanding of concepts, methods, and applications. Hints for
solving the exercises are given at the end of the book.

1.1 Information Retrieval

1.1.1 Brief History of Information Retrieval

In this section, an attempt is made to give a concise summary of the history
(Wellish 1991, Lesk 2007) of IR, which may help one to understand ex-
actly what is meant by IR (and perhaps also to clear up some misunder-
standings and confusion according to which IR is a synonym for data min-
ing, or data retrieval, or library science, albeit that it stems from them and
shares some aspects with them even today).
 Very briefly, and yet very broadly, but very exactly, information re-
trieval means finding relevant information in a store of information. In
other words, in principle, IR does not mean finding any information that
we happen to come across or information we are fortunate enough to dis-
cover by chance without having anything particular in mind. IR means that
we already have a need for information that we are able to formulate, and
then find relevant items in a store (collection) of items.

1.1.1.1 Table of Contents

Try to imagine that our scientific books, journals, or teletexts lack tables of
contents. Then imagine how you find out when a particular TV program

1.1 Information Retrieval 3

begins or on which page a specific article in, say, Scientific American,
begins. It would be possible, but is it not easier to use a table of contents?
And yet, there were times when there was no such thing as a table of con-
tents: e.g., there were none for the clay boards produced in ancient Baby-
lon that contained arithmetical calculations.
 In ancient Greece and the Roman Empire papyrus scrolls were used to
record data in a written format, and scholars found it useful to devise a
means of organizing the material to make locating certain sections of text
easier. For example, Pliny the Elder (around 70 CE) produced a table of
subjects (similar to what we call today a table of contents) to his work The
Natural History in 37 Books. The method of tables of contents was first
used by Valerius Soranus in the second century BCE. Thus, we may as-
sume it had been employed earlier by the Greeks.
 The method of tables of contents to retrieve information is an ancestor of
what we call today inverted file structure, a most important data structure
that is used extensively today in computer science as well as IR.

1.1.1.2 Alphabet

We all take it for granted that, e.g., people’s names can be put in alpha-
betical order. But try to imagine that you are looking for someone’s tele-
phone number in a London telephone directory in which the names are not
ordered. How would you go about searching? How long would it take you
to find the phone number?
 However, alphabetization did not always exist. This special type of or-
dering strings of characters was probably invented, or rather devised, by
Greek scholars in the third century BCE at the Library of Alexandria
(Egypt) in order to better organize the large body of Greek literary work.
Today alphabetization serves as the basis for, and is an ancestor of, one of
the most important and widely used algorithms in computer science (as
well as in IR), namely sorting.

1.1.1.3 Hierarchy

Try to imagine that you are looking for soup recipes in a cookbook that
contains all kinds of recipes for French and Hungarian food in general, but
is not divided into sections nor organized into headings or groups of foods.
How would you find the recipes you are looking for? How long would it
take?

4 1 Introduction

 Organizing written material into a hierarchy of groups (chapters, sec-
tions, headings, paragraphs) is a useful means by which it is possible to
consult the material more easily. In the first and second century CE, Ro-
man scholars (e.g., Valerius Maximus, Marcus Julius Frontinus, and Aulus
Gellius) used to group and organize their written work into books and di-
vide the books into chapters with headings.
 The hierarchical organization of written material to ease the retrieval of
information is an ancestor of one of the most important data structures in
computer science in general and in information retrieval in particular, and
one of the most important concepts in graph theory, namely tree.

1.1.1.4 Index

Nowadays, if someone is looking for a particular author (and his works) in
many libraries around the world, then he/she naturally uses a computer
network. However, there may be readers who remember the days when
this was not the case—a time when there were no computers. In the pre-
computer era (and still in many of today’s libraries), one way was to sim-
ply ask the librarian. But there was another way as well: the use of in-
dexes. This meant going to the big index board, pulling out index shelves,
and browsing through paper cards containing authors’ names in alphabeti-
cal order.
 The use of indexes goes back to ancient Rome, when indexes meant slips
attached to papyrus scrolls that contained the title of the work. Thus, each
scroll on the shelf could be identified without having to pull it out. With
time, indexes could also include an abstract of the work.
 Papyrus scrolls did not have page numbers, leaf numbers, or line num-
bers. (Note: The modern successor of papyrus scrolls is/was the micro-
film.) On the other hand, even if some works were produced in several
copies (sometimes on the order of hundreds), no two copies were exactly
the same.
 The invention of printing (in the fifteenth century) made it possible to
have page numbers and any number of exact copies. This, in turn, enabled
the compilation of reliable indexes (e.g., in books on herbals). The first in-
dexes were not fully alphabetized (the words were ordered only on their
first letter). Full alphabetization only became the rule in the eighteenth
century.
 Indexing is a method by which the exact location (chapter, page, line,
record, sector, etc.) of an identifier (word, term, name, subject, code,
etc.) in a unit (book, file, database, etc.) can be given, and it served as a
basis of and is an ancestor of one of the most important data structures,

1.1 Information Retrieval 5

used, e.g., in computer science, database systems, Web search engines,
and IR, namely inverted file structure.

1.1.1.5 Inception of Information Retrieval

In the late 1940s, the United States military carried out an indexing of war-
time scientific research documents captured from Germany. In the 1950s,
the Soviet Union sent up the first artificial Earth satellite. This exploit was
interpreted a sign of the “science gap” between the United States and the
Soviet Union and led to the realization that little was known in the United
States about Russian science and technology, and it served to motivate
American funding of research in mechanized literature search.
 During this period, among other results:

• The citation indexing method was invented (E. Garfield), which is at the
basis of link analysis methods used in today’s Web search engines.

• The terms “information retrieval” and “descriptor” were coined
(C. Mooers).

• Term occurrences were introduced to represent a piece of text as a se-
quence of pairs (ti, fi), i = 1,...,n, where ti denotes a term occurring in
text, and fi is the number of times ti occurs in the text (H. P. Luhn,
KWIC index).

1.1.1.6 Models

The 1960s and 1970s witnessed a boom in IR experimentation, which
yielded the most important measures as well as measurement principles
(known as Cranfield paradigm) used to evaluate the relevance effective-
ness of a retrieval method (i.e., how well a retrieval method or system per-
forms) under laboratory conditions: precision and recall (C. Cleverdon).
They have been in use ever since.
 The recognition that computing methodology (methods, algorithms,
software, programming) and technology (hardware) made it possible to
identify terms and to perform Boolean operations on sets of data automati-
cally yielded systems that allowed full text searches. As a result, computer-
ized commercial retrieval systems (e.g., Dialog and BRS) were developed,
which implemented what we call today the Boolean model of IR (based on
mathematical logic and set theory).
 Later, more sophisticated theoretical frameworks, or models, were elabo-
rated. They served and serve as bases for the development of retrieval
methods and have motivated an enormous body of research:

6 1 Introduction

• Probabilistic model (based on probability theory: M. E. Maron, J. L.
Kuhns, S. Robertson, C. J. van Rijsberegen, C. Spärck-Jones).

• Vector space model (based on linear algebra: G. Salton, M. Lesk, J.
Sammon),

Later, in the 1980s and 1990s, further models were proposed:

• Information logic (based on logical imaging: C. J. van Rijsbergen).
• Fuzzy model (based on fuzzy set theory: D. H. Kraft, B. E. Boyce, D. A.

Buell).
• Language model (based on linguistics and probability theory: W. B.

Croft, J. Ponte).
• Inference network model (H. Turtle, W. B. Croft).
• Associative interaction model (based on the Copenhagen interpretation

in quantum mechanics: S. Dominich).

1.1.1.7 World Wide Web

At the end of 1980s, the World Wide Web (Web or WWW for short) was
proposed (T. Berners-Lee). The Web is a worldwide network of electronic
documents stored in computers belonging to the Internet (which is a
worldwide computer network).
 By the 1990s, many IR models, methods, and algorithms were already
known, a huge amount of research had gone into IR, many experimental
retrieval systems had been used and tested in IR laboratories, and a large
body of experimental results had accumulated. However, their application
in practice, in large and real retrieval systems meant to be used by groups
of real people at large was yet to come.
 And the Web offered just that opportunity.
 In the late 1990s, retrieval systems, called Web search engines, ap-
peared. They implement many features and results obtained in IR and en-
able many people around the world to search for information in an ever-
growing collection of electronic documents.
 The Internet and the Web have made it possible to more easily design
and use intranet systems, i.e., dedicated retrieval systems for a specific
company, university, or organization.
 At the same time, the Internet, the Web, and search engines have defi-
nitely changed the way we (should) think about IR. IR is, like most nascent
fields, interdisciplinary. The Web has taught us that if we want to search
for information in data stored in computer memories successfully, then we
should considerably enlarge our understanding of IR so as to encompass:

1.1 Information Retrieval 7

• Fields other than those that traditionally belong to IR (information sci-
ence, library science, linguistics, etc.).

• Fields that would not have been previously considered to be in the
mainstream of IR, such as mathematics, algorithms, computational
complexity, physics, neural networks, etc.

• Completely new technologies developed, run, and maintained by impor-
tant information companies (search engine companies).

1.1.2 “Definition” of Information Retrieval

Let us start this section by giving a widely accepted formulation for the
meaning of the term information retrieval. This may seem superfluous, or
unnecessarily meticulous (first of all for specialists). However, it will
prove useful to review different definitions given over a time span of more
than 40 years. Thus, the meaning of the term IR can be made as precise as
possible inline with our present understanding of the field.

• Salton (1966) defines IR as follows: “The SMART retrieval system takes
both documents and search requests in unrestricted English, performs a
complete content analysis automatically, and retrieves those documents
which most nearly match the given request.”

• Van Rijsbergen (1979) gives the following definition: “In principle, in-
formation storage and retrieval is simple. Suppose there is a store of
documents and a person (user of the store) formulates a question (re-
quest or query) to which the answer is a set of documents satisfying the
information need expressed by this question.”

• Some years later, Salton (1986) phrased it as follows: “An automatic
text retrieval system is designed to search a file of natural language
documents and retrieve certain stored items in response to queries sub-
mitted by the user.”

• Meadow et al. (1999) defined IR as follows: “IR involves finding some
desired information in a store of information or database. Implicit in
this view is the concept of selectivity; to exercise selectivity usually re-
quires that a price be paid in effort, time, money, or all three. Informa-
tion recovery is not the same as IR…Copying a complete disk file is not
retrieval in our sense. Watching news on CNN…is not retrieval ei-
ther…Is information retrieval a computer activity? It is not necessary
that it be, but as a practical matter that is what we usually imply by the
term.”

• Berry and Browne (1999) formulated it as follows: “We expect a lot
from our search engines. We ask them vague questions … and in turn

8 1 Introduction

anticipate a concise, organised response. … Basically we are asking the
computer to supply the information we want, instead of the information
we asked for. … In the computerised world of searchable databases this
same strategy (i.e., that of an experienced reference librarian) is being
developed, but it has a long way to go before being perfected.”

• Baeza-Yates and Ribeiro-Neto (1999) wrote: ”In fact, the primary goal
of an IR system is to retrieve all the documents which are relevant to a
user query while retrieving as few non-relevant documents as possible.”

• Belew (2000), within his cognitive FOA (finding out about) framework,
formulated retrieval in a pragmatic way: “We will assume that the
search engine has available to it a set of preexisting, ‘canned’ passages
of text and that its response is limited to identifying one or more of these
passages and presenting them to the users.

• A few years later, Baeza-Yates (2003) formulated a definition similar to
his earlier view: “IR aims at modelling, designing, and implementing
systems able to provide fast and effective content-based access to large
amounts of information. The aim of an IR system is to estimate the rele-
vance of information items to a user’s information expressed in a
query.”
What can be seen form the above definitions? The answer is that, in es-

sence, the meaning of the term IR has remained the same over the last 40
years (practically from its inception). Thus, we may say that IR is con-
cerned with (typically using computer systems) the organization, storage,
retrieval, and evaluation of information relevant to a user’s information

need.
The user (researcher, tourist, etc.) has an

information need (e.g., articles published on
a certain subject, travel agencies with last-
minute offers, etc.). The information need is
expressed in the form of a query, i.e., in a
form that is required by a computer program
(e.g., according to the syntax of some query
language). The program then retrieves in-
formation (journal articles, Web pages, etc.)
in response to the query.

Thus, the meaning of the term IR may be
formulated formally as the following mapping:

IR : (U, IN, Q, O) → R,

1.1 Information Retrieval 9

where

• U = user
• IN = information need
• Q = query
• O = collection of objects to be searched
• R = collection of retrieved objects in response to Q

The information need IN is, obviously, more than its expression in a
query Q. IN comprises the query Q plus additional information about the
user U. The additional information is specific to the user (e.g., spoken lan-
guages, fields of interest, preferred journals, etc.). The importance of addi-
tional information is found in that it is one factor in relevance judgment,
i.e., when the user is judging whether a retrieved object is relevant or not
to his/her specific IN. The additional information is obvious for the user
(he/she implicitly assumes it) but not for the computerized retrieval sys-
tem. Thus, we may say that the additional information is an implicit (i.e.,
not expressed in Q) information I specific to the user U, and we may write
IN = (Q, I).

With this, a stricter reformulation of the meaning of IR is the following:
IR is concerned with finding a relevance relationship ℜ between object O
and information need IN; formally:

IR = ℜ(O, IN) = ℜ(O, (Q, I)).

 In order for an IR system to find such a
relationship ℜ it should be possible to also
take into account the implicit information I,
and ideally the information that can be in-
ferred from I to obtain as complete a picture
of user U as possible. Finding an appropri-
ate relationship ℜ would mean obtaining
(deriving, inferring) those objects O that
match the query Q and satisfy the implicit
information I. With these, the notion of IR is
formally rewritten as follows:

IR = ℜ(O, (Q, I, |⎯)),

where I, |⎯ means I together with information inferred (e.g., in some
formal language or logic) from I. Relationship ℜ is established with some
(un)certainty m, and thus we may write that (Dominich 2001):

10 1 Introduction

IR = m[ℜ(O, (Q, I, |⎯))].

Thus, in essence, information retrieval is a kind of measurement in that it
is concerned with measuring the relevance of an item stored in computer
memory to a user’s information request (and then returning the items
sorted in descending order based on their measure of relevance). All IR
frameworks, methods, and algorithms aim at as good a measurement as
possible.

Note: A few words on the meaning of the term “information” are in order.1
The notion of energy was separated from the notion of matter when man
was able to construct and use equipment that converted one type of energy
into another type (e.g., the steam engine). Likewise, with the advent of
computer systems, the notion of information is being used, more and more,
as a distinct idea, separated from the notions of energy and matter. One
may distinguish different forms of information: genetic information (car-
ried by DNA), human information (generated in our brains), computer in-
formation, information in crystals, etc. There is no absolute consensus on
the meaning of the term “information.” In everyday life, information is
usually used as a synonym for data, knowledge, news, experience, or facts.
Indeed, human information may be conceived as that which humans per-
ceive, create, or convey, without checking its validity or reliability. In one
word, information is that which is susceptible to be known. In contrast,
human knowledge is information that possesses order. Meaning should be
distinguished from information. It may be viewed as being information
that is interpreted in a given context. For example, a book contains infor-
mation, regardless of whether someone is reading it or not, or whether we
understand its language or not. But it gains meaning only when we are able
to read it and place it into some context. In IR, whether it is data, meaning,
knowledge, or information that is being retrieved constitutes a subject for
debate. Generally and pragmatically speaking, however, IR deals with hu-
man information, and is concerned with measuring the degree of similarity
between information need and items in a collection of information (practi-
cally regardless of whether the information need and the items are, at a
philosophical level, more information, or rather meaning, or perhaps
knowledge.).

1
Stonier, T. (1990). Information and the Internal Structure of the Universe. Springer

Verlag, London.

1.2 Retrieval Methods 11

1.2 Retrieval Methods

Many retrieval methods have been elaborated since the inception, about
half a century ago, of the field of IR. These can be categorized in several
ways. For example:

• Classical methods (Boolean, vector space, probabilistic).
• Nonclassical methods (information logic, situation theory, associative).
• Alternative (or hybrid) methods (e.g., cluster, fuzzy, latent semantic, ar-

tificial neural network, genetic algorithm, natural language processing,
knowledge base).

• Web methods (link analysis, browsing, visualization, etc.).

 Albeit that these methods differ from one another, they nonetheless have
properties in common. Thus, in general:

• They are typically based on text in the sense that terms are identified
(associated with) in the documents (objects) to be searched, and the
number of occurrences of terms is used to represent numerically (using
so-called weights) the content of documents (objects).

• The query is conceived as being a piece of text. (Hence, it too is repre-
sented by weights of terms.)

• Apart from their content, the importance of Web pages stems from an-
other source as well: from the fact that they can be linked to each other
(and thus form a network).

• The relevance degree (or similarity) between a query and a document
(or a Web page) is established by a numeric computation based on
weights and/or link importance.

 The ways in which the document weights, the importance of Web pages,
and the similarity values are computed depend on the mathematical
framework in which the retrieval method used is being based. Typically,
different mathematical frameworks are used in different methods.
 For an example: The Boolean retrieval method is based on set theory
and mathematical logic in that:

• Documents are represented as sets of terms.
• The query is conceived as a Boolean expression of terms.
• The retrieved document set is obtained by performing the set operations

corresponding to the logical operators occurring in the query.

12 1 Introduction

As another example, in the vector space retrieval method,

• Both the documents and the query are represented as vectors in the lin-
ear space of terms.

• The similarity values are based on the scalar product between the query
vector and document vectors.

 In this book, after reviewing (in Chapter 2) the fundamental mathemati-
cal notions (mathematical logic, set theory, relations theory) used in IR,
the well-known major retrieval methods are described, namely:

• Boolean method
• Vector space method
• Generalized vector space method
• Probabilistic method
• Language model method
• Inference model method
• Impact factor method
• Connectivity method
• Mutual citation method
• PageRank method
• HITS method
• SALSA method
• Associative interaction method
• Bayesian methods

 The major retrieval methods are particularly important in that many
other retrieval methods are based on them. The methods are described in
such a way that they can be understood and applicable themselves as well.
Thus, they are helpful for a wide range of readers from newcomers through
students and educators to researchers and system developers coming from
a variety of fields such as information science, computer science, mathe-
matics, engineering, linguistics, etc. The exact description of every method
is given in detail. For every method, a complete example is also given to
help enhance understanding.
 However important the knowledge of the major retrieval methods, a
clear understanding of their usefulness and application possibilities is
equally important. For this reason, in Chapter 4, the basics of IR technol-
ogy are presented:

• Identification of terms.
• Power law.
• Stoplisting.

1.3 Modern Algebra 13

• Stemming.
• Weighting schemes.
• Term-document matrix.
• Inverted file structure.
• Typical architecture of a retrieval system.
• Web characteristics.
• General architecture of a Web search engine.
• Architecture of a Web metasearch engine.
• Measures of retrieval effectiveness.
• Laboratory measurement of retrieval effectiveness (precision-recall

graph).
• Measurement of relevance effectiveness of Web search engines.

 The basics of IR technology are useful for practitioners as well for more
theoretically minded readers, and they also enable a better understanding
of the experimental results reported throughout the book.

1.3 Modern Algebra

In order to acquire a better and a more complete understanding of the ap-
proach as well as of the results described in this book, it is useful to know
exactly what is meant by the term “modern algebra.”
 First, in just a few words, it all started many thousands of years ago with
solving equations and has ended up nowadays with structures and mapping
between them. But this may be just a new beginning. In order to delineate
the meaning of the term modern algebra, we note very succinctly a few of
the milestones in its long history.

1.3.1 Equations

Everyday life (agriculture, land surveying, financial operations, commerce,
etc.) has always generated equations—even in ancient times in Babylon,
Egypt, and Greece. For instance, in ancient Babylon, about 4000 years
ago, agriculture and land surveying gave rise to problems such as: The
length and width of a piece of land is equal to 30, while its area is equal to
221. What are the length and the width of the piece of land? In today’s no-
tation, this problem is rewritten as the following (system of) equations:

xy = 221, x + y = 30,

14 1 Introduction

where x denotes length and y denotes width. Finding solutions to equations
was, in general, a difficult task. Today, we would solve this problem as
follows:

• Obtain x from the second equation: x = 30 − y.
• Substitute this into the first equation: (30 − y)y = 30y − y2 = 221.
• Solve the equation 30y − y2 − 221 = 0 to obtain the roots y1 and y2.
• Use the relationship x = 30 − y to obtain the value x1 corresponding to y1

(and x2 corresponding to y2).

However, it is very instructive to see how this problem was solved in an-
cient Babylon. In today’s notation, the solution was obtained as follows
(symbols to denote unknowns and operations were not used; computation
procedures were expressed as a sequence of sentences):

1. Let x = 30/2 + u, y = 30/2 − u. (Note that, with this notation, x + y = 30).
2. Then, xy = 302/4 − u2 = 900/4 − u2 = 225 − u2 = 221.
3. From this, u = √4 = 2. [The computation of the square root of a num-

ber was known in ancient Babylon and has been used ever since. In
today’s notation, in order to compute √a, guess a value x0 such that 1
< x0 < √a. Then, calculate x1 = 0.5(x0 + a/x0) to obtain a better ap-
proximation of √a. An even better approximation is x2 = 0.5(x1 +
a/x1), and so on.]

4. Hence, x = 30/2 + u = 15 + 2 = 17, and y = 30/2 − u = 15 − 2 = 13.

=−±−
a

acbb
2

42

132
)13500(1346060 2

×
−××−±−

.

1.3.2 Solving by Radicals

Having a formula to calculate the roots of an equation has some clear theo-
retical and practical advantages:

We can see that this is a very ingenious technique.
However, there were equations for which a formula was known and was

used to compute the roots. For example (again, in today’s notation), the
second-degree equation 13x2 +60x = 13,500 was solved using the formula
that we know and use today:

Unfortunately, we do not know how this formula was arrived at.

1.3 Modern Algebra 15

• The formula is an expression containing the coefficients of the equation,
and no other variable.

• The formula uses some or all of the well-known operations on numbers:
addition, subtraction, multiplication, division, and radicals. No other op-
eration occurs. This is referred to as solving by radicals.

• There is no need to look for tricks to solve the equation.
• Thus, root computation becomes a mechanical process.

Legend tells us that in ancient Greece, during a plague epidemic, the
gods asked that the size of the altar stone to be doubled in order to stop the
epidemic. The architects were faced with the problem of carving a new
stone altar having its height (and length and width) equal to the root of the
equation x3 = 2. They did not succeed. This problem, known today as
“doubling the cube,” has since become very famous. (More probably,
however, the problem originates in the geometrical interpretation of the
root of the equation x3 = 2 coming from ancient Babylon. It has since been
shown that this equation does not have rational roots; hence, doubling the
cube cannot be solved.) Even in ancient Greece, many tried to find a solu-
tion. One solution involved solving the third-degree equation 2 = (d − 2)3.

The computation of the roots of an equation of third degree was done in
different ways. For example, in the Middle Ages:

• In China, a method based on polynomial division was used.
• In Arabian mathematics, it meant finding the intersection points of a pa-

rabola with a hyperbola.

The formula that allowed one to solve a third-degree equation by radi-
cals is the result of the efforts of Italian mathematicians (Scipione del
Ferro, Ludovico Tartaglia, Girolamo Cardano) in the sixteenth century.
Cardano showed that (in today’s notation) any third-degree equation ax3 +
bx2 + cx + d = 0 can be transformed into a simpler form y3 + py + q = 0
with the substitution x = y − b/(3a), where p = c/a − b2/(3a2), q = 2b3/(27a3)
− (bc)/(3a2) + d/a. Tartaglia gave the following formula, using radicals for
the equation y3 + py + q = 0:

y1 = u + v, y2,3 = 3
22

vuivu −±+− ,

where

3

32

322
, +±−= pqqvu .

16 1 Introduction

 Around 1540, the Italian mathematician Ludovico Ferrari offered a solu-
tion by radicals (which looked even more complicated than the one above)
to the fourth-degree equation x4 + ax3 + bx2 + cx + d = 0.

Also in the sixteenth century, owing to the work by the English mathe-
matician Thomas Harriot, the Dutch mathematician Albert Girard, and the
French mathematician François Viète, the relationships (known today as
Viète’s relationships) between the roots and the coefficients of an n-degree
equation a1xn + a2xn−1 + … + anx + an+1 = 0 were established. For example,
when n = 2, x1 + x2 = −a2/a1, x1x2 = a3/a1.

At the end of the eighteenth century, the German mathematician Carl F.
Gauss proved that the n-degree equation a1xn + a2xn−1 + … + anx + an+1 = 0
has exactly n roots in the set of complex numbers (a result known as the
fundamental theorem of algebra today).

By the eighteenth century, as a result of the work by Viète, the French
mathematician René Descartes, the English mathematician Isaac Newton,
the Swiss mathematician Leonhard Euler, and Gauss, algebra became an
established branch of mathematics concerned with solving equations.

Many methods for computing roots were known, and many properties
were discovered. And yet, the big question remained unanswered:

Can a fifth-degree or higher-degree equation be solved by radicals?

1.3.3 Birth of Modern Algebra

Euler studied the rational functions (i.e., radical expressions that contain
only addition, subtraction, multiplication, division, radicals) of the roots of
the n-degree equation. He noted that if a rational function of the roots is
invariant with respect to all the permutations of the roots, then this func-
tion is a rational function of the coefficients of the equation. Joseph L. La-
grange, a French mathematician, believed that the answer to this question
would be found by studying the group of the permutations of roots.
Around 1771 he conjectured that the answer to the “big” question was
negative. Following in the footsteps of Euler and Lagrange, the Italian
mathematician Paolo Ruffini gave a proof of this conjecture at the end of
the eighteenth century. Unfortunately, the proof was incomplete. The
Norwegian mathematician Niels H. Abel gave another (alas, also incom-
plete) proof in 1826.
 It was and is clear that many n-degree equations can be solved by radi-
cals. The problem of solvability by radicals is a general one; more specifi-
cally: When can an n-degree equation be solved by radicals? Is there a for-
mula that allows one to compute the roots of any n-degree equation?

1.3 Modern Algebra 17

 Complete and correct answers to these questions were given by the
French mathematician Évariste Galois around 1830. It is worth sketching
the line he followed, which helps us to understand how modern algebra
started and the essence of the idea behind it.

For simplicity, let us consider a third-degree equation. By the funda-
mental theorem of algebra, it has exactly three roots: x1, x2, and x3. A per-
mutation of roots is represented as a table with two rows and as many col-
umns as the number of roots. For example,

132
321

means that 1 stands for x1, 2 stands for x2, 3 stands for x3, and any element
in the first row is replaced by the element below it in the second row (e.g.,
instead of 3 we write 1). The number of all permutations of n elements is
equal to n! = 1 × 2 × 3 ×…× n. Thus, the number of permutations of all the
roots of a third-degree equation is 3! = 6. The set P of all permutations can
be arranged as a matrix:

=
321
321

11p =
312
321

12p =
213
321

31p

=
231
321

21p =
123
321

22p =
132
321

23p

Let the consecutive application of two permutations be denoted by ⊗, e.g.,
p12 ⊗ p22 = p23 (i.e., 1 transforms into 2 in p12, 2 transforms into 2 in p22,
and so 1 is transformed into 2 as in p23, and so on). It can be shown that the
operation ⊗ has the following properties:

• It is an internal operation, i.e., for any two permutations, it yields an-
other existing permutation.

• The permutation p11 leaves every permutation in place, i.e., p11 ⊗ pij =
pij, for every permutation. (It behaves like the number 1 with respect to
the multiplication of numbers.) p11 is the neutral element of ⊗.

• For every permutation pij, there is a permutation puv such that pij ⊗ puv =
p11. In other words, for every permutation there is an inverse permuta-
tion (just like, e.g., 1/a for the number a with respect to multiplication).

• It can be shown that ⊗ is associative.

18 1 Introduction

Galois called the set P of permutations together with the operation ⊗, i.e.,
the structure (P, ⊗), a group, and this concept has been in use ever since.

The coefficients a1, a2,…,an+1 of the n-degree equation belong to a set C
of rational, real, or complex numbers. In this set, addition (+) and multipli-
cation (×) are defined and satisfy well-known properties. In other words,
the triple (C, +, ×) forms a well-defined structure (namely, field) given by
the properties of + and ×.

Galois showed that there is a connection between the following two
structures:

• The group (P, ⊗) of permutations of the roots of the n-degree equation.
• The field (C, +, ×) to which the coefficients of the equation belong.

He also delineated the conditions under which the n-degree equation can
be solved by radicals.
 Galois’s work is very important from two points of view:

• Practical point of view: He solved the problem of solvability of equa-
tions by radicals.

• Theoretical point of view: He laid down the foundations of a new type
of reasoning and approach in science, namely by considering structures
(i.e., sets endowed with operations satisfying certain properties) and
mappings between them.

1.3.4 Modern Algebra

In the nineteenth century, approaches based on structures multiplied. In
1854, the English mathematician George Boole showed that Aristotle’s
laws of human thought can be expressed using mathematical symbols and
operations that form a structure. This is known today as Boolean algebra,
and is usually represented as the sets of all subsets of a set together with
the set union, intersection, and complementation.

In 1888, the Italian mathematician Giuseppe Peano defined an axiomatic
foundation of natural numbers as a structure of elements generated by cer-
tain operations. The German mathematician David Hilbert did the same for
geometry in 1899. (Of course, we should not forget Euclid, who, as far as
we know, was the first to provide an axiomatic foundation for geometry
more than 2000 years ago in ancient Greece.)

Around 1890, the German mathematician Richard J. W. Dedekind ob-
served that the greatest common divisor and the least common multiple are
in number theory what logical conjunction and logical disjunction are in
logic (i.e., they form Boolean algebras). This led him to create what is

1.4 Lattice 19

called today “lattice theory”: the theory of a very general and abstract
structure (see the next section). He showed that a Boolean algebra is a spe-
cial type of lattice.

that since the nineteenth century, when algebra meant the study of solving
equations, the meaning of the term “algebra” has been changed (more ex-
actly, has been expanded). Today it means the study of abstract structures
and the mappings between them, i.e., the study of collections of objects in
general, endowed with operations or relations satisfying certain properties.
As the properties can be studied without regard to the particular elements
of the sets involved, the terms “abstract algebra” or “modern algebra” are
now current. In order to emphasize the importance of modern algebra, it is
sufficient to note that entire fields of science, e.g., the various geometries,
different areas in physics, functional analysis, and tensor calculus all deal
with algebraic structures (at an abstract level).

We end this section by noting that one of the goals of this book is to
show that there is a strong connection between IR and modern algebra,
provided primarily through one of the basic notions in the latter—the lat-
tice—in the sense that it will be shown that the major retrieval methods
can all be based upon this concept.

1.4 Lattice

“Never in the history of mathematics has a mathematical theory been the
object of such vociferous vituperation as lattice theory.” So begins one of
the papers2 Gian-Carlo Rota, one of the prominent figures in lattice theory.

The hostility toward lattices began when Dedekind published the papers
that first gave birth to the theory. Kronecker, one of his contemporaries,
wrote in a letter: Dedekind lost “his mind in abstraction.”

So, what is a lattice? A lattice is a “well-behaved” set (i.e., a certain col-

• There is an order among its objects (to be exact, the order is partial, but
this is irrelevant at this point).

• For any two objects, there is one that is ‘greater’ than (or ‘equal’ to)
both of them.

• For any two objects, there is one that is ‘smaller’ than (or ‘equal’ to)
both of them.

2 The Many Lives of Lattice Theory. Notices of the AMS, vol. 44, no. 11, pp: 1440–1445.

lection of objects). It is well behaved for three reasons:

We will not say more regarding the development of structure-based appro-
aches, as what we have noted is, we think, enough for the reader to see

20 1 Introduction

The drawing below is a (typical) visual representation of a network of
points that form a lattice. In the middle row of three points, any two points
‘converge’ (follow the links) into one point (one upward and one down-
ward):

As opposed to the drawing above, the one below shows a network of

points that do not form a lattice. In the two middle rows of the two pairs of
points, any two points ‘converge’ to both points in the other row, which is

In order to make the concept of lattice clearer, let us consider, as an ex-

ample, possible prices for bread (prices are given in Hungarian forints,
though this is now actually irrelevant):

17, 32, 110, 164, 210, 255, 280, 320.

The prices are in an ascending order (from left to right) to better visualize
the order that characterizes the collection of prices. It can be seen that
whichever two prices we take, there is a price that is higher and one that is
lower. Mathematically, bread prices, when gathered into one ordered col-
lection (i.e., in a set), may be viewed as forming a lattice.

This may sound trivial. Yet it is very important from a practical point of
view, because it makes it possible:

• To answer questions like “Which type of bread is cheaper?,” or “Which
is the most expensive bread?”

• To introduce prices into the database of an accounting system and to an-
swer a question like “Give me the names of bread types whose prices
are between 100 and 400.”

not permissible in a lattice:

1.5 Importance of Lattices 21

1.5 Importance of Lattices

What we said about lattices in the preceding section is common to every
lattice.
 In theoretical as well as practical applications, lattices having certain
additional properties are of real interest and use. Let us consider an exam-
ple. It is known that the position and velocity of a car (or ship, etc.) can be
measured simultaneously and with any desired precision. However, in
quantum mechanics, e.g., the position and velocity of an electron cannot be
measured simultaneously with any degree of accuracy. Thus, it turns out
that there are quantities in nature that cannot always be measured simulta-
neously with any precision.
 What is to be done?
 First, both situations should be accepted as being aspects of reality.
Second, if that is the case, then we may not think about (or describe) all the
parts of reality using the same “scheme” (reasoning structure). It seems
that different structures (ways of reasoning) are needed for different parts
of reality (situations).
 It was shown that what is common in the two situations above (car and
electron) is that in both cases the structure of our thinking (the way in
which we may logically combine propositions expressing measurements)
can be formally expressed as a lattice.
 What is different in the two situations, however, is that the lattices used
are not exactly the same: they differ in certain properties (to be somewhat
more exact, in the distributive law). The two drawings below are visual
representations of the two kinds of lattices that show the structure of the
thinking (reasoning) that we have to follow in these two situations. The lat-
tice on the left represents the structure of our thinking (i.e., the structure of
the corresponding logic) in situations of the first type (e.g., in everyday
life), while that lattice on the right corresponds to the structure of our
thinking (i.e., the structure of the corresponding logic) in situations of the
second type (e.g., the subatomic world).

22 1 Introduction

 Once we have the formal models (lattice), we can enjoy some advan-
tages, e.g.:

• A better understanding of phenomena.
• The ability to make predictions (e.g., for future measurements, we can

be sure that the position and velocity of a car (or ship, etc.) can always
be measured, whereas we cannot even hope⎯at our current level of un-
derstanding of nature⎯that we will ever be able to measure the position
and velocity of subatomic particles simultaneously with any precision).

 In Chapter 3, the concept of lattice as well as certain properties (that
prove useful in IR) are presented in detail (and in such a way that they can
be understood even by beginners). Every notion and property is illustrated
by clarifying examples.

1.6 Lattices in Information Retrieval

1.6.1 Retrieval Systems

Retrieval systems that apply lattices are described in Chapter 5, namely:

• Moors
• FaIR
• BR-Explorer
• FooCA
• Rajapakse-Denham

A method to transform a term-document matrix into a concept lattice is
also described.
 Further, a detailed mathematical treatment of the properties of the lat-
tices applied in these retrieval systems is presented. Perhaps the primary
advantage of this treatment, in a mathematical formulation is that these lat-
tices are not modular, i.e., they are similar to the drawing below.

1.6 Lattices in Information Retrieval 23

This result sheds light upon the structure of the logic that underlies these
systems. Moreover, it is far from intuitive. Reasoning with documents and
queries (i.e., the structure of the logic applied) may be different than the
structure of reasoning with propositions in mathematical logic. In the lat-
ter, whatever operation we perform on propositions always and necessarily
leads to another proposition. Furthermore, any two propositions are com-
patible with one another. The study of the lattices applied in retrieval sys-
tems reveals that documents, queries, or terms are not always and neces-
sarily compatible with one another: subjecting them to logical operations
may yield an entity having a different quality or nature.

1.6.2 Boolean Retrieval

The Boolean retrieval method is a very important one in that it is widely
used in database systems (e.g., Oracle, SQL) and World Wide Web search
engines. In principle, it is a simple method, but all the more important for
that.
 The Boolean retrieval method (both formally and using an example)
and the application of lattices in Boolean retrieval are described in Chapter
6. An efficient way to answer Boolean queries is presented as well.

1.6.3 Vector Space Retrieval

After the description of the required mathematical concepts and results
(Chapter 7), the application of lattices in vector space retrieval is presented
and discussed (Chapter 8):

• Calculation of meaning.
• Queries with disjunction.
• Compatibility of relevance assessments.
• Vector space method as lattice-lattice mapping.

It is shown that, unlike the nonmodular character of the lattices applied in
retrieval systems (Chapter 5), the lattices used in vector space retrieval are
modular but are not generally distributive; i.e., they look like (or are
equivalent to) the following drawing:

24 1 Introduction

Further, we show that the very character of the underlying mechanism

of vector space retrieval is nonsubmodularity. As is shown in a parallel to
the lattices applied in quantum mechanics, whose underlying mechanism
(i.e., way of reasoning) is characterized by orthomodularity, the applica-
tion of lattices in vector space retrieval is characterized by nondistributiv-
ity and nonsubmodularity.

Quantum mechanics and vector space retrieval have a common “weak-
est link”: distributivity does not always hold (i.e., their entities are not al-
ways compatible with one another). In other words, their assertions do not
always commute. However, as compared to quantum mechanics, the un-
derlying mechanism of vector space retrieval has an additional ingredient:
a nonsubmodular lattice-lattice mapping, which means that the logic of re-
trieval has a more sophisticated structure than the logic of quantum me-
chanics. Retrieval is a very special correspondence between two different
types of lattices (i.e., between two different types of logic), one for the ob-
jects to be searched (which is well-behaved and nicely organized) and an-
other for queries (which is not so well-behaved, this being perhaps an ex-
pression of free will).

1.6.4 Fuzzy-Algebra-Based Retrieval Methods

In Chapter 9, after introducing the necessary mathematical concepts and

trieval methods are described: fuzzy cardinality, fuzzy entropy, and fuzzy
probability. Experimental results are reported to show that they yield in-
creased retrieval effectiveness [when compared to traditional vector space
and latent semantic indexing (LSI) methods].

It has long been known that the linear space is not generally an adequate
mathematical framework for IR. In Chapter 9, the principle of invariance
(PI) is described. According to PI, documents may or may not preserve
their identities when looked at from different points of view. It is shown
that PI together with the notion of fuzzy cardinality form a correct mathe-
matical framework for the traditional vector space retrieval method, from
which the latter can be formally (and hence correctly) obtained.

properties (from tensor algebra, fuzzy set theory, fuzzy algebra), three re-

1.6 Lattices in Information Retrieval 25

1.6.5 Probabilistic Retrieval

Probabilistic retrieval methods are based on the concept of conditional
probability. The nonbinary model, language model, and inference model
retrieval methods are described in detail, together with examples for each.
 It has long been known that whether the documents, queries, relevance,
and irrelevance form a σ-algebra or not (for the conditional probabilities to
have sense from a mathematical point of view) is questionable. Thus,
probabilistic retrieval methods need another mathematical framework to
support them. In Chapter 10, we show that the notion of lattice offers such
a framework and how the lattice of logical implications from mathematical
logic offers a correct mathematical background for probabilistic retrieval.

1.6.6 Web Retrieval and Ranking

After introducing the notion of a Web graph and discussing degree distri-
bution, the basic methods using link structure analysis are presented:

• Impact factor
• Connectivity
• Mutual citation
• PageRank
• HITS
• SALSA
• Associative
• Belief network
• Inference network

Clarifying examples are provided for each one and a connection between
HITS and LSI is described.
 Then, using the results obtained for lattices in Chapter 9, we present an
aggregated method for Web retrieval based on lattices. This method allows
one to determine the importance of pages taking into account both their
link importance (using link analysis) and their intrinsic importance (stem-
ming from page content). Experimental evidence for the relevance effec-
tiveness of this method is also given in terms of comparisons with com-
mercial search engines (Google, Altavista, Yahoo!).

After introducing the notion of Web lattice and chain, we define Web
ranking as a lattice-lattice function between a Web lattice and a chain. We
show that ranking is not submodular. Then, global ranking is defined as a
lattice-lattice function (i.e., a mapping from the direct product of Web lat-
tices to the chain [0; 1]). It is shown that global ranking is not submodular.

26 1 Introduction

Based on the notion of global ranking, a global ranking method is given
that enables one to compute the global importance of a Web page at Web
level taking into account the importance of the site that the page belongs
to, but without the need to consider the entire Web graph of all pages.

After proving that any tree as well as any document can be transformed
into a lattice, we show that the DocBall model and Galois (concept) lattice
representations of a document are equivalent to one another.

Based on these results as well as on the fact that the structure of any site
is a lattice, we present a method to compute site importance.

1.7 Exercises and Problems

Exercises and problems are found at the end of every chapter (apart from
Chapters 1 and 7). These are, of course, IR-oriented, and they are designed
to help the reader better understand and deepen his/her knowledge of the
concepts and methods discussed as well as their applications in practice.
There are hints for solving them at the end of the book.

2 Mathematics Basics

You cannot conceive the many without the one.
(Confucius)

This chapter presents the concepts, operations, and properties of mathe-
matical logic (proposition, negation, conjunction, disjunction, implication,
equivalence), set theory (sets, set operations), and relations theory (binary

 Every notion and property is illustrated by several examples, which are
designed to enhance understanding. Some are purely mathematical, but the
rest are taken from everyday life or have an IR flavor.
 Apart from examples, a number of exercises and problems are also
proposed at the end of the chapter. They are IR-oriented, and are included
to improve understanding and show how logic, sets, and relations are/can
be applied in IR. Solutions are given at the end of the book (in Chapter
12).
 At the end of the chapter, the literature referred to, as well as recom-
mended, is listed.

relations, functions, equivalence relations, posets) that are being applied
in modern computerized (IR) and which are used in the modern algebra
of IR.

28 2 Mathematics Basics

2.1 Elements of Mathematical Logic

The main goal of logic has always been the study of reasoning, proof, and
truth.
 In the eighteenth century, the German mathematician Gottfried W.
Leibniz utilized an algebraic language to express logical ideas. At the end
of the nineteenth century, thanks to logicians such as, e.g., Gottlob Frege
and George Boole, a formal language, consisting of just a few symbols,
was developed that allowed for the writing of mathematical assertions.
 The ultimate principles of human reasoning (syllogism, excluded mid-
dle, etc.) as well as its basic concepts (the notion of number, the axioms of
geometry, etc.) have remained⎯and probably will remain⎯the same over
time. Hardly anyone will doubt them.
 Mathematical logic is concerned with the study (using formal means) of
the structural properties of the correct deduction of conclusions. Here we
present the fundamentals of mathematical logic. They are important in that
they constitute the formal mathematical basis of, and are used intensively
in, modern computerized IR.
 To a reader acquainted with the cold facts of reality, or exclusively
technically minded, this part of the book may seem, in places, less
friendly, or too abstract, or perhaps bizarre. However, those readers should
understand that the symbols and operations of mathematical logic have
well-defined meanings and that their power is in their ability to capture
and express many different aspects of reasoning in both science and every-
day life in a unified formal way.

2.1.1 Proposition

A proposition is a statement (formulation, assertion) that can be assigned
either a value T or a value F (there is no third alternative), where T and F
are two different values, i.e., T ≠ F. For example, T = true, F = false (these
values are used throughout this book), or T = yes, F = no, or T = white, F =
black, or T = 1, F = 0. The values T and F are referred to as truth values. A
proposition cannot be true and false at the same time (principle of noncon-
tradiction).

 The reader already familiar with mathematical logic can skip this
chapter.

2.1 Elements of Mathematical Logic 29

Example 2.1

• “I am reading this text.” is a ⎯ true ⎯ proposition.
• The sentence “The sun is shining.” is also a proposition because either

the value T or F can be assigned to it.
• The sentence “The cooks wearing red hats are playing football at the

North Pole” becomes a proposition if a truth value can be assigned to it.

In general, it is not a necessary quality of an assertion or proposition that it
be true. For example, the proposition “It is raining” may be true or false.
However, there are propositions that are “absolutely” true (e.g., “The year
2001 is the first year of the twenty-first century.”)

2.1.2 Negation

The negation of a proposition P is a proposition denoted by ¬P and pro-
nounced “not P.” If P is true, then ¬P is false, and if P is false, then ¬P is
true (Table 2.1). Hence, ¬(¬P) is always P (law of double negation).

Table 2.1. Truth Table of Logical Negation

P ¬P
T F
F T

Example 2.2

“I am not reading this text” is a⎯false⎯proposition, and is the negation of
the proposition “I am reading this text.”

2.1.3 Conjunction

Given two propositions: P, Q, the proposition denoted by P Q (ex-
pressed as “P and Q”) is called a conjunction. The conjunction is true if
and only if both P and Q are true, and false otherwise (Table 2.2). Thus, P

 (¬P) is always false (law of contradiction).

Table 2.2. Truth Table of Logical Conjunction

P Q P Q
T T T
T F F
F T F
F F F

30 2 Mathematics Basics

Example 2.3

• “I am reading this text It is raining” is a proposition, and its truth
value can be assigned by the reader.

• “I am thinking to myself A bicycle has two wheels” is a proposition
(the reader can assign a truth value to it), albeit that one would rarely
link its two constituent propositions into one sentence in everyday
speech.

2.1.4 Disjunction

Given two propositions P, Q, the proposition denoted by P V Q (expressed
as “P or Q”) is called a disjunction. The disjunction is false if and only if
both P and Q are false, and true otherwise (Table 2.3). Thus, P V (¬P) is
always true (law of the excluded third).

Table 2.3. Truth Table of Logical Disjunction

P Q P V Q
T T T
T F T
F T T
F F F

Example 2.4

“I am reading this text V It is raining” is a true proposition (regardless of
whether it is actually raining or not).

2.1.5 Implication

Given two propositions P, Q, the proposition denoted by P Q (ex-
pressed as “P implies Q”) is called an implication (alternate notation: P →
Q). The implication is false if and only if P is true and Q is false, and true
otherwise (Table 2.4). The values of the implication P Q coincide with
the values of the disjunction ¬P V Q, which can be easily checked using
Tables 2.3 and 2.4.

Table 2.4. Truth Table of Logical Implication
P Q P Q
T T T
T F F
F T T
F F T

2.1 Elements of Mathematical Logic 31

Example 2.5

• “I am reading this text It is raining” is a proposition (its truth value
depends on whether it is actually raining or not).

• “I am reading this text I am not here” is a false proposition.
• “I am not reading this text The circle is a square” is a true proposi-

tion (albeit that one would rarely formulate such a sentence in everyday
speech).

• “I am not reading this text The Sun does not exist in 2007” is a true
proposition.

 In Section 10.6, we have more to say about implication (also called a
material conditional).

2.1.6 Equivalence

Given two propositions P, Q, the proposition denoted by P ⇔ Q (ex-
pressed as “P is equivalent to Q”) is called equivalence (alternate notation:
P ↔ Q). The equivalence is true if and only if both P and Q have the same
truth values, and false otherwise (Table 2.5).
 The truth values of the equivalence P ⇔ Q coincide with the truth val-
ues of the conjunction (P Q) (Q P), which can be easily checked
using the respective truth tables.

Table 2.5. Truth Table of Logical Equivalence

P Q P ⇔ Q
T T T
T F F
F T F
F F T

 The following equivalences are very important and useful. (Their proofs
can be easily given using the corresponding truth tables.):

• Law of contraposition: (P Q) ⇔ (¬Q ¬P)
• (P Q) ⇔ (¬P V Q)
• De Morgan’s laws: ¬(P Q) ⇔ (¬P) V (¬Q)
 ¬(P V Q) ⇔ (¬P) (¬Q)

Example 2.6

“I am not here now ⇔ The circle is a square” is a true proposition.

32 2 Mathematics Basics

Note: As can be seen, negation, disjunction, and conjunction are enough to
express any logical expression (because both implication and equivalence
can be written using negation and disjunction).

2.2 Elements of Set Theory

Set theory not only allows one to group and thus talk about entities un-
der consideration and express operations among them in a compact form,
but it also represents a formal way of dealing with logical aspects of struc-
tures (structures of objects in general). In this respect, it is enough to say
that, e.g., the subsets of a set have the same formal structure as the logical
propositions. In a word—they are equivalent. Thus, set theory is a very
useful formal tool for engineers and information scientists alike. This part
of the chapter presents the concepts and operations in set theory that are
the most useful in IR.

2.2.1 Set

The notion of set is a fundamental one, but it does not have a mathematical
definition. A set is a collection of distinct objects. The objects in a set are
called elements. If an object x is an element of a set S (equivalent formula-
tion: x belongs to S), this is denoted as x ∈ S. The term x ∉ S means that x
does not belong to S.
 It is very important to note that:

• An element can occur at most once in a set.
• The order of the elements in a set is unimportant.

 A set can be given by enumerating its elements between brackets, e.g., A
= {a1, a2,...,an}, or by giving a property P(x) [e.g., using a predicate P(x);
see Section 2.3.3 for the notion of predicate] that all elements must share:
A = {x | P(x)}. A set having a fixed number of elements is finite, and infi-
nite otherwise. An empty set contains no elements and is denoted by ∅.

Example 2.7

• = {1, 2,…,n,…} denotes the set of natural numbers.
• ={..., −2, −1, 0, 1, 2, ...} denotes the set of integer numbers.

It is widely believed that every mathematician should learn set theory. This
is true, but it is also widely believed that only they should learn set theory,
but this latter notion is a delusion (see below).

2.2 Elements of Set Theory 33

• denotes the set of rational numbers.
• denotes the set of real numbers.
• denotes the set of complex numbers.
• {thought, ape, quantum, Rembrandt} is a set.
• {mammal | water content of mammal’s milk is less than 20%} is a set.

There are two important quantifiers that are used extensively in set theory
(as well as in mathematics, logic, and formal disciplines in general):

1. Universal quantifier, which is denoted by ∀ and means for every, for
any.

2. Existential quantifier, which is denoted by ∃ and means there exists
(at least one), there is (at least one).

Example 2.8

• ∃ x ∈ {1, 2, 3} such that x is an even number.
• ∀ set A ∃ set B such that A = B.

2.2.2 Subset

If all the elements of a set B belong to a set A, then B is called a subset of A
(Fig. 2.1); this is denoted by B ⊆ A, i.e.,

B ⊆ A ⇔ (∀x ∈ B x ∈ A). (2.1)

Fig. 2.1. Visualization of the notion of subset, B ⊂ A.

B ⊂ A denotes the fact that B is a proper subset of A, i.e., all the elements
of B belong to A, but A also has other elements:

B ⊂ A ⇔ ((∀x ∈ B x ∈ A) (∃y ∈ A y ∉ B)). (2.2)

Note that the empty set ∅ is a subset of any set A, i.e., ∅ ⊆ A.

A
 B

34 2 Mathematics Basics

2.2.3 Equality of Sets

The equality of sets A and B is denoted by the symbol = and defined as

A = B ⇔ ((A ⊂ B) (B ⊂ A)), (2.3)

i.e., A and B have exactly the same elements.

Example 2.9

{thought, ape, quantum, Rembrandt} = {thought, Rembrandt, quantum,
ape}. Note that the order of elements in a set does not matter.

2.2.4 Set Union

The union of sets A and B is denoted by the symbol ∪ and defined as
(Fig. 2.2)

A ∪ B = {x | (x ∈ A) V (x ∈ B)}. (2.4)
Example 2.10

{thought, ape, quantum, Rembrandt} ∪ {1, 2} = {thought, ape, quantum,
Rembrandt, 1, 2}. Note that the operation of union is a purely formal one
(just like the other set operations); it does not require that the elements of

Fig. 2.2. Visualization of set union A ∪ B.

Set union satisfies the following properties (as can be easily checked using
the definitions of sets equality and union):

• Commutativity: A ∪ B = B ∪ A, for any two sets A, B.
• Associativity: A ∪ (B ∪ C)= (A ∪ B) ∪ C, for any three sets A, B, C.
• Idempotency: A ∪ A = A, for any set A.

A ∪ B

A B

the sets be compatible with each other or have the same nature in any
way.

2.2 Elements of Set Theory 35

2.2.5 Set Intersection

The intersection of sets A and B is denoted by the symbol ∩ and defined as
(Fig. 2.3)

A ∩ B = {x | (x ∈ A) (x ∈ B)}. (2.5)

Fig. 2.3. Visualization of set intersection A ∩ B.

 If A ∩ B = ∅, A and B are said to be disjoint sets (Fig. 2.4).

Fig. 2.4. Visualization of the disjoint sets A and B.

Example 2.11

{thought, ape, quantum, Rembrandt} ∩ {thought, Rembrandt, 1, 2} =
{thought, Rembrandt}. Note that the result of the intersection consists of
the elements that are exactly the same.

 Set intersection satisfies the following properties (as can be easily
checked using the definitions of set equality and intersection):

• Commutativity: A ∩ B = B ∩ A, for any two sets A, B.
• Associativity: A ∩ (B ∩ C)= (A ∩ B) ∩ C, for any three sets A, B, C.
• Idempotency: A ∩ A = A, for any set A.

2.2.6 Set Difference

The difference of sets A and B (in this order) is denoted by the symbol \,
and is defined as (Fig. 2.5)

A \ B = {x | (x ∈ A) (x ∉ B)}. (2.6)

A B

A

B

A ∩ B

36 2 Mathematics Basics

Example 2.12

{thought, ape, quantum, Rembrandt} \ {thought, Rembrandt, 1, 2} = {ape,
quantum}.

Fig. 2.5. Visualization of set difference A \ B.

 We note that, in general, A \ B ≠ B \ A (i.e., set difference does not
commute, just like, e.g., the subtraction of numbers).

2.2.7 Cartesian Product

The Cartesian product of sets A and B (in this order) is denoted by the
symbol × and defined as (Fig. 2.6)

A × B = {(a, b) | (a ∈ A) (b ∈ B)}. (2.7)

We note that A × B ≠ B × A if A ≠ B.

Example 2.13

{thought} × {1, 2} = {(thought, 1), ((thought, 2)}. Note that the pairs of a
Cartesian product are “ordered” pairs, i.e., the pair (thought, 1) is not the
same as the pair (1, thought), and thus the latter pair is not an element of
this Cartesian product.

Fig. 2.6. Visualization (using points) of the Cartesian product A × B =

{a, b, c} × {d, e} = {(a, d), (a, e), (b, d), (b, e), (c, d), (c, e)}.

A \ B

A
B

e

d

 a b c

2.2 Elements of Set Theory 37

2.2.8 Set Complement

Let A ⊆ B. The complement CBA of set A relative to set B is defined as
(Fig. 2.7)

CBA = {x | (x ∈ B) (x ∉ A)} = B \ A. (2.8)

Fig. 2.7. Visualization of set complement CBA.

Example 2.14
C{thought, ape, quantum}{thought} = {ape, quantum}.

2.2.9 Powerset

The powerset ℘(A) of a set A is defined as ℘(A) = {X | X ⊆ A}, i.e., the
set of all subsets of A. The empty set ∅ is a member of the powerset of any
set A, i.e., ∅ ∈ ℘(A).

Example 2.15

℘({thought, ape, quantum}) = {∅, {thought}, {ape}, {quantum},
{thought, ape}, {thought, quantum}, {ape, quantum}, {thought, ape, quan-
tum}}.

2.2.10 Cardinality of Set

The cardinality of a set A is denoted by |A| and defined (from a practical
point of view) as the number of elements it contains. The cardinality of a
finite set A having n elements is denoted as |A| = n, whereas that of an infi-
nite set B is equal to infinity, i.e., |B| = +∞.
 The cardinality of powerset ℘(A) is equal to |℘(A)| = 2n, where |A| = n.
Indeed, the elements of ℘(A) are:

CBA
 A B

38 2 Mathematics Basics

• The empty set ∅.
• The subsets of A containing the elements of A one by one, two by two,

and so on.
• The set A itself.

That is, if A = {a1, a2,…,an}, then

℘(A) = {∅, {a1}, {a2},…,{an}, {a1, a2},…,{a1, an},…,{a1, a2, a3},…, A}.

Thus,

|℘(A)| =
=

=
n

k

nk
nC

0
2 , (2.9)

where k
nC denotes the combinations of n taken by k.

Example 2.16

2.2.11 Properties of Set Operations

Apart from the properties given thus far, the following properties (holding
for any set A, B, C) are also important and applied in IR:

• Distributivity: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
 A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

• Absorption: A ∩ (A ∪ B) = A, A ∪ (A ∩ B) = A,
• De Morgan’s laws (see Section 2.1.6 for an analogy in mathematical

logic):

 CA(B ∩ C) = CA(B) ∪ CA(C).
 CA(B ∪ C) = CA(B) ∩ CA(C).

2.3 Elements of Relations Theory

The aim of this section is to present the major concepts of relations theory,
with an emphasis on ordering and equivalence relations (as applied in IR).
 However trivial the word “order” might sound, it is all important in
theoretical sciences as well in practical applications. In order to illustrate

From Example 2.15: |{∅, {thought}, {ape}, {quantum}, {thought, ape},
{thought, quantum}, {ape, quantum}, {thought, ape, quantum}}| = 23 = 8.

2.3 Elements of Relations Theory 39

this, let us consider the following situation. We assume that we are given
the following objects:

O1 = ball, O2 = photograph, O3 = building,

O4 = spaceship, O5 = blouse.

At first glance, we may have the impression that considering (or even men-
tioning) these objects together (i.e., in one set) is strange and that it hardly
makes any sense. However, order can be introduced among them. For ex-
ample, it is possible to calculate a price Pi for every object Oi:

O1 has price P1, O2 has price P2, O3 has price P3,

O4 has price P4, O5 has price P5.

Prices are real numbers, so they can be ordered, e.g., as follows:

P2 ≤ P5 ≤ P1 ≤ P3 ≤ P4.

Using the ordering of prices, we can define an order among the objects
themselves :

photograph ≤ blouse ≤ ball ≤ building ≤ spaceship.

In this way, a structure (namely, an order) has been introduced among our
objects. This structure makes it possible to deal with and talk about them
from a different perspective. For example:

• It has now become possible to answer the question “Which is the cheap-
est object?”

• It has also become possible to incorporate these objects into an account-
ing system.

2.3.1 Binary Relations

Given two sets A, B, a binary relation R is a subset of the Cartesian prod-
uct A × B, i.e., R ⊆ A × B. A is called the domain and B is called the codo-
main of R. The fact that (x, y) ∈ R can also be denoted by xRy (which
should be read as “x is in relation R with y”).

Example 2.17

• {(thought, 1)} is a relation of the Cartesian product {thought} × {1, 2} =
{(thought, 1), ((thought, 2)}.

• Let A denote the set of words of language L1 (e.g., Hungarian) and B the
set of words of language L2 (e.g., English). Then, the structure of a

40 2 Mathematics Basics

bilingual dictionary D (Hungarian-English) can be modeled as a binary
relation D ⊆ A × B, i.e., as pairs of corresponding words.

2.3.2 Function

Let A and B denote two sets. A function f defined over set A with values in
set B is a binary relation f ⊆ A × B for which ∀a ∈ A ∃b ∈ B such that afb.
The function is usually denoted as f: A → B, f(x) = y, where x ∈ A, y ∈ B.
The way in which the relation f (i.e., the mapping of x onto y) is per-
formed, or constructed, falls outside our scope (this generally depends on
the application or problem being considered).

Example 2.18

• f: → +, f(x) = x2 is a function (its graphic representation is a
parabola).

• g: {1, 2, 3} → {4, 9, 11}, g(2) = 4, g(3) = 9 is not a function because it
does not assign any value to 1.

• f = {(1, 4), (2, 4), (3, 9)} ⊆ A × B = {1, 2, 3} × {4, 9, 11} is a function.
In the usual notation, one writes the following:

f: {1, 2, 3} → {4, 9, 11}, f(1) = 4, f(2) = 4, f(3) = 9.

 A function f: A → B is

• Surjective if ∀b ∈ B ∃a ∈ A such that f(a) = b.

• Injective if ∀a1, a2 ∈ A, a1 ≠ a2, it follows that f(a1) ≠ f(a2).

• Bijective if it is surjective and injective.

1

2

3

4

9

11

f : A B

2.3 Elements of Relations Theory 41

2.3.3 Predicate

Let A denote an arbitrary set. A predicate is a function Pred: A → {T, F}
such that Pred(a) is a proposition for every a from A, i.e., Pred(a) is as-
signed exactly one of the values T or F.

Example 2.19

Let A be the set of the names of all members of a family. For example, A =
{William, Anne, Edward, John, Eve, Deirdre}. Then, the function assign-
ing a marital status to everybody in the family is a predicate Pred: A →
{married, not married}. For example:

• Pred(William) = married (i.e., in words: William is married.),
• Pred(Deirdre) = not married (i.e., in words: Deirdre is not married.).

2.3.4 Equivalence Relation

A binary relation R ⊆ A × A is an equivalence relation if it satisfies the fol-
lowing conditions:

• Reflexivity: xRx, ∀x ∈ A.
• Symmetry: xRy yRx, ∀x, y ∈ A.
• Transitivity: ((xRy) (yRz)) xRz, ∀x, y, z ∈ A.

Example 2.20

• Let x denote a positive rational number: x ∈ +. Let us define the fol-
lowing rounding rule: if number x has a nonzero fractional part, then the
number is rounded to the integer number immediately greater than x.
For example, 6.17 = 7. The rounding rule is an equivalence relation in
the set +. The elements of the set {x | n < x ≤ n + 1, n ∈ } are equiva-
lent to each other.

• The relation “brother/sister of” may be viewed as an equivalence rela-
tion between people (if we are allowed to say, for the sake of reflexivity,
that anyone is a brother/sister of him/herself).

42 2 Mathematics Basics

2.3.5 Ordering Relation

A binary relation R ⊆ A × A is an ordering relation if it satisfies the fol-
lowing conditions:

• Reflexivity: xRx, ∀x ∈ A.
• Transitivity: ((xRy) (yRz)) xRz, ∀x, y, z ∈ A.
• Antisymmetry: ((xRy) (yRx)) x = y, ∀x, y ∈ A.

Example 2.21

• The relation ≤ (meaning: “less than or equal to”) is an ordering relation
in the set of real numbers.

• In the set of natural numbers, the relation “divides” (e.g., 3 divides
12), denoted by |, is an ordering relation.

2.3.6 Partially Ordered Set

A set A with an ordering relation R defined on it is called a partially or-
dered set (or poset, for short). Notation: (A, R).

Example 2.22

From Example 2.21, the following structures are posets:

• (, ≤)

• (, |)

Let A denote a set. Then, the structure (℘(A), ⊆) is a poset. Indeed, one
can easily check, using the corresponding definitions, that ⊆ is reflexive
(i.e., A ⊆ A), transitive (i.e., if A ⊆ B and B ⊆ C, then A ⊆ C), and anti-
symmetric (i.e., if A ⊆ B and B ⊆ A, then A = B).

2.3.7 Partition

The partition of a set A is given by mutually disjoint subsets X1, X2,...,Xn
(of A):

2.4 Exercises and Problems 43

A = X1 ∪ X2 ∪...∪ Xn

Xi ∩ Xj = ∅, i = 1, 2,...,n, j = 1, 2,...,n, i ≠ j.

(2.10)

Any equivalence relation R on a set A provides a partitioning of A into mu-
tually disjoint equivalence classes (all the elements belonging to the same
class are equivalent to each other).

Example 2.23

• The sets {x | n < x ≤ n + 1, n ∈ } in Example 2.20 are equivalence
classes, and they provide a partition of the set + of positive rational
numbers.

• A relation R is referred to as a preordering relation if it is reflexive and
transitive. For example, transportation priorities in a logistics system
form a preordering relation. Such a system can become very compli-
cated in practice, but its complexity can be reduced by decomposing it
into equivalence classes.

2.4 Exercises and Problems

1. Is the sentence “The sun will shine over the Niagara waterfall on the
April 10, 6045” a proposition?

2. What is the negation of the proposition “The Sun is shining”? Is it
“The Sun is not shining? Is it “It is not the Sun that is shining”?

3. When is the sentence “If John is a liar, then Peter is a truth teller”
true?

4. Let P denote the following proposition P = “I wear a necktie,” and Q
denote the following proposition Q = “I am elegant.” Write the sen-
tence “I am elegant because I wear a necktie” using the formalism of
mathematical logic.

5. Let us assume that you go to library (or you search the World Wide
Web) in order to read newspaper articles on the art of dancing. For
example, waltz, rock and roll, tango, salsa, but you are not interested
in salsa as a Web ranking method. Express the information you using
the formalism of mathematical logic.

44 2 Mathematics Basics

6. Let us assume that J1,...,Jn denote Web pages (or journal papers). Let
the URL (title) of the page (paper) Ji be Ti, and its posting date (pub-
lication date) be Di (i = 1,...,n). Turn the set of pages (papers) into a
poset on their posting date, and then on the length (length is equal to
number of words) of their URLs. What do you observe?

7. Let us assume that you are given the task to design an ordered struc-
ture for toys in a kindergarten. How would you order the toys? Is
there just one way to order them? Can you find more than one way to
create order among the toys, i.e., to define posets of toys?

8. Let us assume that B = {B1,...,Bn} denotes a set of Web pages (or
books). Let T1,...,Tm denote the terms appearing in them. Create a par-
tition P of set B if all the pages (books) in which the term Ti has the
same number of occurrences are equivalent to each other. Do this for
every i = 1, 2,...,m. What do you observe?

9. Let B1,...,Bn denote all the Web pages of the World Wide Web, or all
the books held in a library. Do they form a set?

2.5 Bibliography

Dumitriu, A.: History of Logic (Abacus Press, Kent, 1977)
Enderton, H. B.: A Mathematical Introduction to Logic (Academic Press, New

York, 1972)
Halmos, P. R.: Naive Mengenlehre (Naïve Sets Theory) (Vandenhoek and Ruprecht,

Goettingen, 1968)
Kneale, W., and Kneale, M.: The Development of Logic (Oxford University Press,

1962)
Krivine, J. L.: Introduction to Axiomatic Set Theory (D. Reidel, 1971)
Kurtz, M.: Handbook of Applied Mathematics for Engineers and Scientists

(McGraw-Hill, New York, 1991)
Makowsky, J. A.: Model theory and computer science: an appetizer. In: Handbook

of Logic in Computer Science vol 1 Background and Mathematical Structures,
ed by Abramsky, S., Gabbay, D. M., and Maibaum, T. S. E. (Clarenden Press,
Oxford1992)

Mendelson, E.: An Introduction to Mathematical Logic (Van Nostrand Reinhold,
Princeton, NJ, 1964)

3 Elements of Lattice Theory

Lattice theory will play a leading role in
the mathematics of the twenty-first century.

(Gian-Carlo Rota)

In this chapter, we discuss concepts and properties that pertain to lattice
theory (lattice, poset, duality, Hasse diagrams, atomicity, modularity,
distributivity, complementation, orthocomplementation, orthomodularity,
Boolean algebra, important lattices) that are applied in the theory of
information retrieval (IR), in the development of IR systems, and in the
major retrieval methods. Further concepts and properties of lattices are
introduced in subsequent chapters, as they become relevant.
 By important lattices we mean those lattices that are widely applied in
IR, namely: the Boolean algebra of the powerset, of the logical proposi-
tions, and of the logical predicates, and further the distributive lattice of
logical implications.
 Every property is discussed and proved in detail. Many examples and
figures are given in order to help the reader grasp the concepts and proper-
ties presented.
 Apart from examples, there are exercises and problems that are IR-
oriented and are designed to improve understanding and show how basic
properties of lattices are/can be applied in IR. Solutions are given at the
end of the book.
 A bibliography on the theory of lattices is included at the end of the
chapter.

46 3 Elements of Lattice Theory

3.1 Lattice

The notion of lattice represents one of the basic structures in the modern
theory of algebraic structures (next to, e.g., groupoid, group, factor, ring,
field, linear space, poset, sequence, clan, incline, etc.). The concept of lat-
tice has important applications in several mathematical disciplines (e.g.,
topology, functional analysis). It is, at the same time, an interesting notion
in that it is the only concept that denotes both a relational and an algebraic
(i.e., operations-based) structure.
 The German mathematician Richard Dedekind wrote a book based on
the notes he took of Dirichlet’s lectures, which was first published in 1863.
In the later 1893 edition, there is a section about lattices (axioms, modular
law, duality, distributive law, free lattices). Apparently, Dedekind used lat-
tice terminology in an 1877 paper well before he published the second edi-
tion of his book. Dedekind noted that lattices were discussed by Ernst
Schröder in an 1880 volume, and that that led him to consider nonmodular
lattices. However, the founder of modern lattice theory was Garrett Birk-
hoff, who proposed it in a book first published 1940, which went through
several editions.

∧: L × L → L,

∨: L × L → L.

(3.1)

The structure (L, ∧, ∨) is called a lattice if the following properties hold:

• Commutativity: A ∧ B = B ∧ A, A ∨ B = B ∨ A, ∀A, B ∈ L.
• Associativity: A ∧ (B ∧ C) = (A ∧ B) ∧ C, ∀A, B, C ∈ L.
 A ∨ (B ∨ C) = (A ∨ B) ∨ C, ∀A, B, C ∈ L.
• Absorption: A ∧ (A ∨ B) = A, A ∨ (A ∧ B) = A, ∀A, B ∈ L.

It is worth noting that:

1. First, absorption is the only property that connects the meet and the
join.

2. Second, any lattice L is at the same time a commutative semigroup
with respect to the meet and the join (a semigroup is a structure (G, *)
in which the operation * is associative).

3. Third, a property called idempotency holds in any lattice: A ∧ A =
A, ∀A ∈ L. Indeed, taking B = A ∧ X, the absorption property A ∧
(A ∨ B) = A becomes A ∧ (A ∨ (A ∧ X)) = A ∧ A = A. Idempotency

 Given a set L, two operations (i.e., functions), denoted by , called
meet, and , called join, are expressed as

3.2 Lattice and Poset 47

also holds for the join: A ∨ A = A, ∀A ∈ L (which can be shown in
a similar manner).

3.2 Lattice and Poset

In any lattice (L, ∧, ∨), an ordering relation ≤ can be defined as

(A ≤ B) ⇔ (A ∧ B = A). (3.2)

The structure (L, ≤) is a poset. The relation ≤ is

• Reflexive because the meet ∧ is idempotent.
• Transitive because from A ∧ B = A and B ∧ C = B it follows that A ∧ B =

A ∧ (B ∧ C) = (A ∧ B) ∧ C = A ∧ C = A.
• Antisymmetric because A ∧ B = A = B ∧ A = B.

 In a poset P, an element A ∈ P is an upper bound of subset H ⊂ P if and
only if X ≤ A, ∀X ∈ H. An upper bound A of H is the least upper bound
(also called the supremum) of H if and only if for any upper bound U we
have A ≤ U. The notions of lower bound and greatest lower bound (also
called the infimum) are similarly defined.
 In a lattice L, any two elements A and B have a supremum sup{A, B}
and an infimum inf{A, B}:

• A supremum: sup{A, B} = A ∨ B.
• An infimum: inf{A, B} = A ∧ B.

Example 3.1

• The powerset ℘(A) of a set A ordered by set inclusion is a lattice. For
every X and Y element of ℘(A) we have (see also Sections 2.2.4, 2.2.5,
2.2.11)

sup{X, Y} = X ∨ Y = X ∪ Y,

inf{X, Y}= X ∧ Y = X ∩ Y.

• The set of natural numbers ordered by the relation “divides” is a lat-
tice, and sup{a, b} = l.c.m.(a, b), inf{a, b}= g.c.d.(a, b), where l.c.m. =
least common multiple and g.c.d. = greatest common divisor.

• Let denote all the equivalence relations R on a set X. The structure
(, ≤) is a lattice, where R1 ≤ R2 ⇔ (x R1 y x R2 y).

48 3 Elements of Lattice Theory

3.3 Duality

If we examine the properties of the meet and join operations defining a lat-
tice, we can observe that they are in pairs in the sense that the meet and
join are swapped. It follows that any other property valid in a lattice (and
being a consequence of the axioms) will also be valid if the meet and the
join are interchanged. This phenomenon is referred to as the principle of
duality. Duality is a useful tool for obtaining new results from given ones
simply. The dual of a given property is obtained as follows:

• The relation ≤ is replaced by the relation ≥.
• The meet is replaced by the join, and vice-versa.

The dual of a valid property is also valid. For example, A ∧ B is a lower
bound of A and B, i.e., A ∧ B ≤ A and A ∧ B ≤ B. Taking the dual, we ob-
tain the following valid properties: A ∨ B ≥ A and A ∨ B ≥ B.

3.4 Hasse Diagram

The fact that any lattice can be turned into a poset allows us to visualize
(i.e., create a drawing of) the lattice. Lattices are represented graphically
using a Hasse diagram:

• Any element of the lattice is usually represented by a point or circle
(depending on which yields a better visualization of the problem or ap-
plication being considered), or by a square (or rectangle) in which data
can be written (if so required by the application).

• Two elements A and B are connected by a nonhorizontal (usually
straight) line if A ≤ B and there does not exist any element C (≠ A, B)
such that A ≤ C ≤ B (in the diagram, A is situated below B).

 For example, the Hasse diagram of the lattice A ≤ B ≤ C is shown in
Fig. 3.1.

Fig. 3.1. Hasse diagram representation of the lattice A ≤ B ≤ C.

B

C

A

3.4 Hasse Diagram 49

 The Hasse diagrams of the lattices that can be formed using n = 1, 2, 3,
4, 5 elements are shown below.
 Any 1-element set is a lattice; its Hasse diagram is a single point: •.
Using n = 2 elements, one can form just one lattice. The Hasse diagram of
the one 2-element lattice is seen in Fig. 3.2.

Fig. 3.2. The one 2-element lattice.

 With n = 3 elements, one can also form just one lattice. The Hasse dia-
gram of the one 3-element lattice is shown above in Fig. 3.1.
 Using n = 4 elements, one can form two lattices. The Hasse diagrams
of the two 4-element lattices are pictured in Fig. 3.3.

Fig. 3.3. The two 4-element lattices.

 The Hasse diagrams of the five 5-element lattices are illustrated in
Fig. 3.4.

Fig. 3.4. The five 5-element lattices.

50 3 Elements of Lattice Theory

 We note that while every lattice is a poset, not every poset is a lattice.
A poset is a lattice if and only if any two of its elements have a supremum
and an infimum. For example, the poset {A, B, C} with A ≤ B and C ≤ B is
not a lattice because A and C do not have an infimum (Fig. 3.5).

Fig. 3.5. A 3-element poset that is not a lattice (the bottom elements do not have
an infimum).

Figure 3.6 shows a 6-element poset that is not a lattice because there are

multiple infima (maxima).

Fig. 3.6. A poset that is not a lattice.

3.5 Complete, Atomic Lattice

A lattice L is called complete if every nonempty subset of L has a supre-
mum and an infimum. Any complete lattice L has a smallest element, de-
noted by 0, and a largest element, denoted by 1.
 It can be immediately seen that every finite lattice is complete.

Example 3.2

• The lattice (L, ≤) on the set L = {0, x, y, z, 1} defined by the ordering re-
lation {(0, x), (0, z), (x, y), (y, 1), (z, 1)} is represented by the Hasse
diagram in Fig. 3.7. This lattice, called the pentagon lattice, is usually
denoted by N5.

• The powerset ℘(A) of a set A ordered by set inclusion is a complete
lattice.

3.6 Modular Lattice 51

• The set of natural numbers ordered by the relation ≤ is not complete
because there is no greatest natural number.

• The set of integer numbers ordered by the relation ≤ is not complete
because there is no greatest or least integer number.

Fig. 3.7. The pentagon lattice (N5).

An atom of a lattice L is an element A of L such that

(0 ≤ B ≤ A) (B = 0 or B = A). (3.3)

A lattice with 0 is atomistic if every one of its elements is a join of atoms,
and it is referred to as atomic if

∀ x ∈ L, x ≠ 0 ∃ atom a ≠ 0 such that a ≤ x. (3.4)

3.6 Modular Lattice

In any lattice L, the following property, referred to as weak distributivity,
holds:

A ∨ (B ∧ C) ≤ (A ∨ B) ∧ (A ∨ C), ∀ A, B, C ∈ L. (3.5)

Indeed, in any lattice, we have A ∧ X ≤ X and A ∧ X ≤ A. If A ≤ B, then A ∧
X ≤ B ∧ X. Also, we have B ≤ B ∨ C. Then, taking X = A, we obtain

B ∧ A ≤ (B ∨ C) ∧ A, (3.6)

and so

A ∧ B ≤ A ∧ (B ∨ C). (3.7)

0

x

y

1

z

52 3 Elements of Lattice Theory

Similarly,

A ∧ C ≤ A ∧ (B ∨ C). (3.8)

In other words, A ∧ (B ∨ C) is an upper bound for both A ∧ B and A ∧ C,
and thus A ∧ (B ∨ C) is an upper bound for their supremum, i.e.,

(A ∧ B) ∨ (A ∧ C) ≤ A ∧ (B ∨ C), (3.9)

whose dual is Eq. (3.5).
 If A ≤ C, then A ∨ C = C [this being the dual of Eq. (3.2)], so A ∨ (B ∧
C) ≤ (A ∨ B) ∧ C [using Eq. (3.5)]. Thus, the following definition can be
introduced:

Definition 3.1. A lattice L is modular if

(∀A, B, C ∈ L for which A ≤ C)

A ∨ (B ∧ C) = (A ∨ B) ∧ C.

(3.10)

 There are lattices that are not modular, e.g., the pentagon lattice N5
(Fig. 3.7). It is clear that x ≤ y. However,

x ∨ (z ∧ y) = x ∨ 0 = x, (3.11)

which is different from

(x ∨ z) ∧ y = 1 ∧ y = y. (3.12)

Modularity is thus not a consequence of the axioms that define the notion
of lattice.

Example 3.3

The set of natural numbers ordered by the relation “divides” is a modu-
lar lattice. It is known from arithmetic that l.c.m. [a, g.c.d.(b, c)] = g.c.d.
[l.c.m.(a, b), c].

 In a modular lattice, the following property holds:

Theorem 3.1. Let L denote a modular lattice, and let A ≤ B, A, B ∈ L.
Then,

A ∧ C = B ∧ C and A ∨ C = B ∨ C

imply A = B.

3.8 Distributive Lattice 53

 Proof. Indeed, we have:

 A = A ∨ (C ∧ A) = (absorption)
 A ∨ (A ∧ C) = (commutativity)
 A ∨ (B ∧ C) = (by assumption)
 A ∨ (C ∧ B) = (commutativity)
 (A ∨ C) ∧ B = (modularity)
 (B ∨ C) ∧ B = (by assumption)
 = B (absorption).

3.7 Sublattice

Let L denote a lattice. A subset S of L is a sublattice of L if for any two
elements A and B of S we have sup{A, B} ∈ S and inf{A, B} ∈ S.
 It can be shown that any sublattice S of a modular lattice L is modular.
Let X and Y be two arbitrary elements of S. Then, we have

infS{X, Y} = infL{X, Y} = X ∧ Y,

supS{X, Y} = supL{X, Y} = X ∨ Y.

(3.13)

Let X, Y, and Z be three arbitrary elements of S and let X ≤ Z. Since L is
modular, using Eq. (3.13), we find that it follows that S is modular as well.

3.8 Distributive Lattice

We have seen that the weak distributivity property [Eq. (3.5)] as well as its
dual hold in any lattice. We may have a lattice with the relation < (instead
of ≤). In such a lattice, if the property (3.5) holds for = (i.e., for equality),
then nothing can be said about its dual (because modularity is not a conse-
quence of the axioms defining a lattice). However, it can be shown that, in
any lattice, the following equivalence holds:

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) ⇔

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).

(3.14)

Let us show the part of this equivalence. We have

 (A ∧ B) ∨ (A ∧ C) =
 ((A ∧ B) ∨ A) ∧ ((A ∧ B) ∨ C) = [left part of Eq. (3.14)]
 A ∧ ((A ∧ B) ∨ C) = (absorption)

54 3 Elements of Lattice Theory

 A ∧ (C ∨ (A ∧ B)) = (commutativity)
 A ∧ ((C ∨ A) ∧ (C ∨ B)) = [left part of Eq. (3.14)]
 (A ∧ (C ∨ A)) ∧ (C ∨ B) = (associativity)
 A ∧ (C ∨ B) = (absorption))
 A ∧ (B ∨ C). (commutativity)

The ⇐ can be shown in a similar fashion. Thus, we introduce the follow-
ing notion of distributivity:

Definition 3.2. A lattice L is distributive if

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C), ∀ A, B, C ∈ L. (3.15)

The dual of Eq. (3.15) also holds. It can be immediately seen that every
distributive lattice is modular. If A ≤ C, i.e., A ∨ C = C, then we have A ∨
(B ∧ C) = (A ∨ B) ∧ C.
 However, not every modular lattice is distributive. Hence, any non-
modular lattice is nondistributive (according to the law of contraposition),
and thus the pentagon lattice (Fig. 3.7) is not distributive.
 The lattice shown in Fig. 3.8 is modular but not distributive:

x ∨ (y ∧ z) = x ∨ 0 = x, (3.16)

which is different from

(x ∨ y) ∧ (x ∨ z) = 1 ∧ 1 = 1. (3.17)

Fig. 3.8. Modular lattice (it is not distributive).

0

x

1

z y

3.8 Distributive Lattice 55

Example 3.4

• The set of integer numbers ordered by the relation ≤ is a distributive
lattice.

• The powerset ℘(A) of any set A is a distributive lattice (ordered by ⊆).
• The set of natural numbers ordered by the relation “divides” is a dis-

tributive lattice.

Figure 3.9 shows the Hasse diagram of a distributive lattice (which can be
easily checked).

Fig. 3.9. Distributive lattice.

 Any sublattice S of a distributive lattice L is distributive. Let A, B, and C
be three arbitrary elements of S. Then, because they are also elements of L,
we have A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C). However, because S is a sublat-
tice, the distributivity condition is also valid in S.
 It can be shown that the following property holds:

Theorem 3.2. In any distributive lattice, we have

(A ∧ C = B ∧ C and A ∨ C = B ∨ C) A = B. (3.18)

 Proof. Indeed, we can write that

 A = A ∨ (C ∧ A) = (absorption)
 A ∨ (A ∧ C) = (commutativity)
 A ∨ (B ∧ C) = (by assumption)
 (A ∨ B) ∧ (A ∨ C). (distributivity)

In a similar way, it can be shown that

 B = B ∨ (C ∧ B) = (A ∨ B) ∧ (A ∨ C).

Hence, A = B.

56 3 Elements of Lattice Theory

3.9 Complemented, Orthomodular Lattice

We first introduce the notion of complementation:

Definition 3.3. A lattice L with 0 and 1 is complemented if there is a map-
ping from L to L such that

A |→ AC, ∀ A ∈ L, (3.19)

so that

A ∧ AC = 0, A ∨ AC = 1, (3.20)

for every A in L. AC ∈ L is called the complement of A.

 The complement may not be unique; i.e., it may happen that an element
has more than one complement. If not every element has a complement,
the lattice is not complemented (albeit that some elements may have com-
plements).
 An important property of distributive lattices is the following:

Theorem 3.3. In any distributive lattice, any element can have at most one
complement.

 Proof. If
A ∧ C = B ∧ C = 0 and A ∨ C = B ∨ C = 1,

then A and B are complements of C. Because A = B (Theorem 3.2), it fol-
lows that the complement is unique (if it exists).

Example 3.5

The powerset ℘(A) of any set A ordered by set inclusion is a comple-
mented lattice with 0 = ∅ and 1 = A.

 Figure 3.10 shows a (not uniquely) complemented lattice. The pentagon
lattice is also a complemented lattice. In any complemented lattice, we
have A ∧ AC = 0, ∀A ∈ L. If we take A = BC, then BC ∧ BCC is the same as
B ∧ BC = BC ∧ B = 0. A special case would be to require that B = BCC, ∀B
∈ L. Further, we have

(A ≤ BC) ⇔ (A ∧ BC = A), (3.21)

and

(B ≤ AC) ⇔ (B ∧ AC = B), (3.22)

3.9 Complemented, Orthomodular Lattice 57

(A ≤ B) ⇔ (A ∧ BC ≤ B ∧ AC). (3.23)

A special case of equivalence [Eq. (3.23)] would be to require that

(A ≤ B) ⇔ (BC ≤ AC). (3.24)

ACC = A,

A ≤ B ⇔ BC ≤ AC.

(3.25)

 Figure 3.11 shows the Hasse diagram of an orthocomplemented lattice.

Fig. 3.11. Orthocomplemented lattice.

 The analogues of de Morgan’s laws (known from set theory, Section
2.2.11) hold in lattices as follows:

A, B L. Then we have

Fig. 3.10. Complemented lattice.

Thus, the following definition may be introduced:

Definition 3.4. A complemented lattice L is orthocomplemented if

58 3 Elements of Lattice Theory

Theorem 3.4. In any orthocomplemented lattice the following relations
(known as De Morgan’s laws) hold:

(A ∨ B)C = AC ∧ BC,

(A ∧ B)C = AC ∨ BC.

(3.26)

(A ∧ B)C = (A ∧ B)C ∨ (A ∧ B)C ≥ AC ∨ BC.

From this, we get that

(A ∧ B)CC ≤ (AC ∨ BC)C,

i.e.,
A ∧ B ≤ (AC ∨ BC)C.

The dual of this also holds:

A ∨ B ≥ (AC ∧ BC)C.

Taking A → AC and B → BC, we obtain

AC ∧ BC ≤ (A ∨ B)C,

from which we get

A ∨ B ≤ (AC ∧ BC)C.

Therefore,

A ∨ B = (AC ∧ BC)C,

and thus

(A ∨ B)C = (AC ∧ BC)CC = (AC ∧ BC).

The other De Morgan law is the dual of this.

 A special case of the modular law (3.10) is the following concept:

Definition 3.5. An orthocomplemented lattice L is called orthomodular if
the modularity condition (3.10) holds for B = AC:

A ≤ C A ∨ (AC ∧ C) = C. (3.27)

 It can be shown that the following property holds:

Proof. Let X = A B. We have that A B A. Thus by Definition 3.4,
AC (A B)C. As A B B, we have BC (A B)C. Using the idempo-
tency property, we obtain

3.11 Important Lattices 59

Theorem 3.5. In any orthomodular lattice, we have (absorption of the
complement)

(AC ∧ BC) ∨ ((A ∨ B) ∧ AC) = AC, ∀A, B ∈ L.

 Proof. As A ≤ A ∨ B, we have from Definition 3.4 that (A ∨ B)C ≤ AC.
By Theorem 3.4, AC ∧ BC ≤ AC. Using Definition 3.5, we find that

(AC ∧ BC) ∨ ((AC ∧ BC)C ∧ AC) = AC.

By Theorem 3.4, this can be rewritten as

(AC ∧ BC) ∨ (A ∨ B) ∧ AC) = AC.

3.10 Boolean Algebra

A complemented and distributive lattice (L, ∨, ∧) is called a Boolean alge-
bra. Any element of a Boolean algebra has a unique complement. Figure
3.12 shows the Hasse diagram (in two different versions) of one and the
same Boolean algebra.

Fig. 3.12. Boolean algebra (two different drawings of the same

Boolean algebra).

3.11 Important Lattices

The following lattices are of basic importance in IR theory as well as prac-
tical applications and retrieval systems.

60 3 Elements of Lattice Theory

3.11.1 Powerset Lattice

The structure (℘(X), ∩, ∪, \), i.e., the set of all subsets of set X, where

• 0 = ∅
• 1 = X
• ∩ = set intersection
• ∪ = set union
• \ = set complement

is a Boolean algebra (see Example 3.1 for a proof).

3.11.2 Lattice of Logical Propositions

The structure ({T, F}, , V, ¬) of propositions in mathematical logic, where

• 0 = False
• 1 = True
• = conjunction
• V = disjunction
• ¬ = negation

is a Boolean algebra (a proof can be easily constructed using the truth ta-
bles given in Section 2.1). De Morgan’s laws (Theorem 3.4) are especially
important in mathematical logic because they make it possible to define
disjunction using conjunction and negation:

¬(P V Q) = ¬P ¬Q, P V Q = ¬(¬P ¬Q), (3.28)

which should be read as “it is not true that neither P nor Q,” or “at least
one of P and Q.” In other words, according to mathematical logic, if one
asserts anything about the world around us, then the assertion or its nega-
tion should/must be true. It cannot be neither true nor false.

3.11.3 Lattice of Logical Predicates

The structure (Pred(X), , V, ¬) of predicates in mathematical logic is a Boo-
lean algebra. Pred(X) denotes the set of all predicates over X; furthermore

Pred1(x) Pred2(x) = (Pred1 Pred2)(x),

Pred1(x) V Pred2(x) = (Pred1 V Pred2)(x).

The proof is similar to that in Section 3.11.2.

3.11 Important Lattices 61

3.11.4 Lattice of Logical Implications

Let P = {P1, P2,…,Pj,…,Pm} denote a set of propositions. The logical
equivalence ⇔ partitions set P into equivalence classes:

P = {C1, C2,…,Ci,…,Cn},

Ci = {Pi1,…,Pik}, Pi1 ⇔…⇔ Pik.

(3.29)

The structure (P,) is a distributive lattice. The logical implication is
to be understood between class representatives (say ci ∈ Ci representing
class Ci, i.e., at the class level). One can define the following ordering rela-
tion ≤ in the lattice P:

(ci ≤ cj) ⇔ (ci cj). (3.30)

• The null element 0 = the equivalence class of propositions that are al-
ways false (e.g., “This object is a table and is not a table.”),

• The unity element 1 = the equivalence class of tautologies (e.g., “This
object is a table or is not a table”).

3.11.5 Lattice Types

A diagram of lattice types is shown in Fig. 3.13.

Fig. 3.13. The diagram of the basic types of lattices used in IR.

Lattice L

Modular L 1-element L 0-element L

Complemented L Distributive L

Orthocomplemented L

Orthomodular L

Boolean algebra

P becomes a complemented lattice, and thus a Boolean algebra, if we
introduce

62 3 Elements of Lattice Theory

3.12 Exercises and Problems

1. Prove that the set of natural numbers ordered by the relation of di-
visibility is a distributive lattice.

2. Let T = {t1, t2, t3} denote a set of properties. Give the lattices corre-
sponding to the following cases: (i) no property is comparable to any
other property, (ii) two properties are comparable, (iii) three proper-
ties are comparable but two are not, and (iv) all three properties are
comparable with each other two by two.

3. Prove that a sufficient and necessary condition for a lattice to be dis-
tributive is that (Z ∧ X = Z ∧ Y, Z ∨ X = Z ∨ Y) X = Y.

4. Let A and B denote two convex figures in a plane (e.g., circle, rectan-
gle). Let A⋅B denote the largest convex figure that is contained in both
A and B, and let A + B denote the smallest convex figure that contains
both A and B. Prove that the set of such figures is a nondistributive
lattice.

5. Prove that the collection of all distinct publications in a library can be
viewed as a Boolean algebra.

6. Let T denote the terms of a thesaurus ordered by the relation “broader
than.” In general, does T form a lattice? Can you specify cases when
T is a lattice and when T is not a lattice?

7. Let T denote the terms of a thesaurus with the following relations be-
tween terms: “broader than,” “narrower than,” “similar to,” “synony-
mous with,” “related to.” Does T form a lattice?

8. Let D denote a monolingual dictionary. Does a reference given in an
entry A to another entry B define an ordering relation A ≤ B? If yes,
does D form a lattice with this relation?

9. Let P denote a set of people ordered by their heights. Is P a lattice? If
yes, study its properties.

10. Let W = {w1,...,wi,...,wj,...,wN} denote a set of Web pages. Do the hy-
perlinks wi → wj form a relation on W? Is W a lattice?

11. Prove that the lattice in the figure is:

3.12 Exercises and Problems 63

(a) Nonmodular:

(b) Distributive:

(c) Modular and nondistributive:

(d) Noncomplemented:

64 3 Elements of Lattice Theory

3.13 Bibliography

Birkhoff, G. Birkhoff, G.: Lattice Theory (American Mathematical Society Collo-
quium. Publication, 1948)

Birkhoff, G.: Lattice-ordered demigroups. Séminaire Dubreil. Algebre et théorie
de nombres. 14(2), 1–19 (1960)

Birkhoff, G., and von Neumann, J.: The logic of quantum mechanics. Annals of
Mathematics. 37(4), 823–843 (1936)

Gratzer, G.: General Lattice Theory (Birkhauser Verlag, Basel/Boston/Berlin,
2003)

Kaufmann, A., and Précigout, M. : Cours de mathématiques nouvelle (A Course in
New Mathematics) (Dunod, Paris, 1966)

Piziak, R.: Orthomodular lattices and quantum physics. Mathematics Magazine.
51(5), 299–303 (1978)

Stern, M.: Semimodular Lattices: Theory and Applications (Cambridge University
Press, 1999) pp. 1–18

Szász, G.: Introduction to Lattice Theory (Academic, New York, 1963)

4 Basics of Information
Retrieval Technology

I hear and I forget. I see and I remember. I do and I understand.
(Confucius)

This chapter introduces the basics of information retrieval technology
(document, stoplist, term, power law, stemming, inverted file structure,
weighting schemes, term-document matrix, architecture of retrieval sys-
tem, architecture of a search engine, relevance effectiveness, measures and
measurement, precision-recall graph method, search engine effectiveness
measurement). These are presented, first, with an eye toward practitioners,
and the material will be useful for those interested in developing practical
retrieval systems. However, the material herein may also be helpful for
theoretically minded readers as well as it will enable a better understanding
of the chapters that follow.
 The ways in which a query (expressing a user’s information need) can
be matched against entities (documents) stored in computers is not dealt
with at this point. Matching and ranking constitute the topics that will be
discussed further on.
 The chapter ends with exercises and problems designed to promote a
deeper understanding of the basics of information retrieval.

66 4 Basics of Information Retrieval Technology

4.1 Documents

Let E1,…,Ej,…,Em denote entities in general. They can be:

• Texts (books, journal articles, newspaper articles, papers, lecture notes,
abstracts, titles, etc.),

• Images (photographs, pictures, drawings, etc.),
• Sounds (pieces of music, songs, speeches, etc.),
• Multimedia (a collection of texts, images, and sounds),
• A collection of Web pages,
• And so on.

For retrieval purposes, it is assumed that each entity Ej is described by (is
assigned, is characterized, is identified by) a piece of text Dj. Obviously, Dj
may coincide with Ej itself (e.g., when Ej is itself a piece of text). Dj is tra-
ditionally called a document.
 This assumption is not as restrictive as it may seem at a first look. It is
based on a quite natural hypothesis, according to which we are/should be
able to describe in words (of some language) any entity that we want to
store in a computer for retrieval purposes. If we accept that describing enti-
ties using words is an act of thought, then the hypothesis is all the more
acceptable, in that, according to Wittgenstein, “language is a vehicle of
thought” (Blair 2006).
 This hypothesis seems, indeed, to be very helpful at the present stage of
computing and retrieval technology. However, new technologies may
eventually offer other possibilities that will grow out of result of research
being carried out at present (e.g., retrieval of drawings by comparing them
with a sample drawing, without using words).

4.2 Power Law

From a computational point of view (and from the viewpoint of a com-
puter programmer), and thus formally, documents consist of words as
automatically identifiable lexical units. Thus,

lexical unit = word =

string of characters preceded and followed by “space” (or some

special character, e.g., ! , . ?).

4.2 Power Law 67

Thus, words can be recognized automatically (using a computer program).
Moreover, word occurrence has a remarkable statistical property that is

• Not at all intuitive.
• Has practical impact.

 It has been shown that the number f of occurrences of words in an Eng-
lish text (corpus) obeys a power law (Yule 1924, Dewey 1929, Thorndike
1937, Zipf 1949, Smith and Devine 1985), i.e.,

f (r) = Cr− , (4.1)

where C is a corpus-dependent constant, and r is the rank of words; is re-
ferred to as the exponent of the power law. The power law f(r) = Cr−1 is
known as Zipf’s law (= 1).

For visualization purposes, the power law is represented in a log-log
plot, i.e., as a straight line obtained by taking the logarithm of Eq. (4.1):

log f (r) = log C − α × log r, (4.2)

where

• log r is represented on the horizontal axis.
• log f (r) is represented on the vertical axis.
• −α is the slope of the line.
• log C is the intercept of the line.

 In practice, the following regression line method can be applied to fit a
power law to data:

Power Law Fitting Using the Regression Line Method

1. We have a sequence of values X = (x1,...,xi,...,xn) on the horizontal
axis and another sequence of corresponding values Y = (y1,...,yi,...,yn)
on the vertical axis (yi corresponds to xi, i = 1,…,n).

2. If the correlation coefficient

r(X, Y) =

() ()−−

−

====

===

2

11
22

11
2

111

n

i i
n

i i
n

i i
n

i i

n

i i
n

i i
n

i ii

yynxxn

yxyxn

suggests a fairly strong correlation⎯i.e., it is close to +1 or −1⎯be-
tween X and Y on a log scale, then a regression line can be drawn to
exhibit a relationship between the data X and Y.

68 4 Basics of Information Retrieval Technology

3. Using the

slope = ()2

11
2

111

−
−

==

===

n
i i

n
i i

n
i i

n
i i

n
i ii

xxn
yxyxn

and the

intercept = ()2

11
2

111
2

1

−
−

==

====

n
i i

n
i i

n
i ii

n
i i

n
i i

n
i i

xxn
yxxxy

of the regression line, we can write the corresponding power law .

 It should be noted, however, that even a strong correlation of the two
quantities X and Y does not mean a necessary cause-effect relationship be-
tween them. The power law can be used as an approximation of some be-
havior (possible connection) between X and Y, especially when no other
relationship is known.
 The parameters α and C of the power law can be computed (approxi-
mated) using the method of least squares, as follows:

Power Law Fitting by Least Squares
1. We have a sequence of values X = (x1,...,xi,...,xn) on the horizontal

axis and another sequence of corresponding values Y = (y1,...,yi,...,yn)
on the vertical axis (yi corresponds to xi, i = 1,…,n).

2. The parameters α and C should be so computed as to minimize the
squared error

() ()−=−
=

−

=

n

i
ii

n

i
ii yCxyxf

1

2

1

2)(α
,

 i.e., the partial derivatives with respect to C and α should vanish.

The least squares method is, in general, a nonlinear optimization problem.
As such, no generally valid method is known that solves it exactly. How-
ever, different approximation methods (e.g., Newton’s method, gradient
descent method, Levenberg-Marquardt method) can be used to find an ap-
proximate solution.
 In practical applications, the number of data (i.e., n) is very large, so the
use of an appropriate mathematical software or other computer program is
highly recommended in order to apply the regression line or the least
squares method (e.g., MathCAD, Matlab, etc.). In general, we recommend

4.2 Power Law 69

using both methods. The values for the parameters that should be accepted
are those for which the approximation error is smaller or which best fit the
problem being considered.

Example 4.1

Let us assume that the data we want to approximate by a power law is X
and Y, n = 150. Fragments of X and Y are shown below. The correlation
coefficient is equal to r(X, Y) = −0.95, which suggests a fairly strong corre-
lation between X and Y. Using the regression line method, we obtain the
following power law : f (x) = 108.38x−3, whereas using the least squares
method, we get: f (x) = 5677733x−2.32. The approximation error is 2.8 × 108
in the regression line method, and 3.6 × 106 in the least squares method.
Thus, we should accept the power law obtained by least squares.

X

1

1
2

3
4

5
6

7
8

9
10

1
2

3
4

5
6

7
8

9
10

= Y

1

1
2

3
4

5
6

7
8

9
10

5.722975·10 6

744343.1

510729.7
449741.1

441213
313464.3

300948.4
235022.1

182827.1
167201.1

=

0 20 40 60 80 100 120 140 160

2 .105

4 .105

6 .105

8 .105

1 .106

original data
regression line method
least squares fit method

X

Y

70 4 Basics of Information Retrieval Technology

 Recent experiments have shown that the distribution of n-grams in Eng-
lish, Chinese, and Greek texts obey a power law with α ≠ 1, i.e., different
from Zipf’s law (Egghe 2000). (Note: An n-gram is a subsequence

nii xx ,...,
1

of n items from a given sequence x1,…,xi,…,xm of items, m ≥ n. If
the sequence consists of words, then an n-gram is a subsequence of n con-
secutive words. For a sequence of characters, an n-gram is a subsequence
of n consecutive characters.) Similarly, Le Quan Ha et al. (2003) showed
that using very large English corpora (1987–1989 Wall Street Journal arti-
cles, 41 million words) as well as very large Chinese text corpora (20 mil-
lion words TREC database and 250 million syllables in the Mandarin
Daily News article database), the power law holds with = 0.6.
 Dominich and Kiezer (2005) showed that the Hungarian language also
obeys a power law, also different from Zipf’s law. The following five
Hungarian text corpora⎯having very different style and content and span-
ning a period of nearly five centuries⎯were used (Table 4.1):

• ARANY: all the writings by János Arany (Hungarian author).
• JÓKAI: all the writings by Mór Jókai (Hungarian author).
• BIBLE (Hungarian translation of the Holy Bible, the “Károly-féle

Biblia”).
• PALLAS: Great Lexikon Pallas (all 16 volumes).
• WEB: Hungarian Web corpus.

Table 4.1. Statistics of the Hungarian Corpora Used in Experiments

Corpus Number of

word forms
Number of
word stems

ARANY (19th c.) 57,376 31,909
JÓKAI (19th c.) 443,367 200,022
BIBLE (1590) 62,474 29,360
PALLAS (1897) 871,635 605,358
WEB (2003) 11,547,753 7,516,221

4.3 Stoplist 71

Table 4.3. The Values of the Power Law
Exponent α for the Corpora Used in Experiments

The value of the exponent α forCorpus word forms word stems
ARANY 0.88 1.1
JÓKAI 1.11 1.36
BIBLE 1.03 1.29
PALLAS 1.09 1.15
WEB 1.59 0.99
Average deviation
from α = 1 +42.5% +47.3%

 In order to explain the empirical observation of power law in language,
Zipf (1949) used the “principle of least effort.” According to this principle,
the writer uses as few words as possible to accomplish a job of communica-
tion, whereas the reader prefers unique words (and hence different words for
different situations) to minimize ambiguity (the effort of interpretation). The
power law is the result of a balance between these two opposing and com-
peting tendencies. There are also other explanations; see, e.g., Belew (2000).

4.3 Stoplist

The experimental result according to which word occurrences in a text
obey a power law can be exploited in IR.

 Table 4.2 shows fragments of the lists of terms and their frequency.
Table 4.2. The First Ten Most Frequent Words in the Hungarian Corpora

Used in Experiments (r = rank of word, f = frequency of word)

r

BIBLE
word f

ARANY
word f

JÓKAI
word f

PALLAS
word f

WEB
word f

1
2
3
4
5
6
7
8
9
10

 a 48796
 és 40658
 az 35248
 12191
 van 9396
 úr 8171
 hogy 7791
 ki 7650
 én 7074
 te 6470

 a 17475
 az 7146
 van 4974
 nem 4772
 s 3814
 is 3200
 hogy 3102
 egy 2865
 és 2530
 de 2276

 a 539612
 az 290432
 van 162547
 hogy 110183
 s 99039
 nem 95309
 egy 75891
 ez 62873
 is 58486
 és 56907

 a 900498
 és 313237
 az 311770
 van 147165
 is 90004
 mely 83363
 ez 61737
 hogy 55998
 nagy 49286
 nem 47076

 a 113416230
 az 47124033
 és 27129451
 van 26089040
 hogy 16594469
 nem 16022747
 is 15872013
 egy 12018565
 ez 12007607
 the 7534824

 Table 4.3 shows the values of the power law exponent obtained in
experiments.

72 4 Basics of Information Retrieval Technology

 Typically, there are words in a document that occur many times, and
there are words that occur once or just a few times. One may disregard fre-
quently occurring words (i.e., frequency f exceeds some threshold value)
on the grounds that they are almost always insignificant, as well as infre-
quent words (i.e., frequency f is below some threshold value) on the
grounds that they are not much on the writer’s mind (or else they would
occur more often). The list of frequent and infrequent words thus obtained
in an entire corpus is called a stoplist. For the English language, a widely
accepted and used stoplist is the so-called TIME stoplist1 (a fragment is
shown below):

 A
 ABOUT
 ABOVE
 ACROSS
 …
 BACK
 BAD
 BE

 …

 When we take Table 4.2 into account, a fragment for a Hungarian stop-
list is as follows:

 a
 és
 az
 van
 is
 mely
 ez
 hogy
 …

 The construction of a stoplist can be automated (using computer pro-
grams). Other stoplists can also be used depending on, e.g., the topic of the
documents being considered. One usually starts with a general stoplist,
and enlarges/modifies it depending on the topic or on experimental results.

1 http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

Note: Of course, a stoplist is, in practice, dependent of the application
context. For example, the word “a” may be in a stoplist in, say, a me-
chanical engineering context, but it is the name of an important vitamin
in medicine.

4.4 Stemming 73

4.4 Stemming

After excluding stopwords, it is advisable that the remaining words be
transformed to their lexical roots. This operation is referred to as stem-
ming. The justification for stemming can be shown through an example.
Let us assume that the document D reads as follows:

From an organizational point of view, the structure of the in-
stitution is consistent with the principle of hierarchical or-
ganization. Albeit that hierarchically structured organizations
can be very effective in many cases, it is advisable to consider
moving toward a network type of organizational model, at the
same time maintaining consistency.

After removing stopwords, among the remaining words there will be, e.g.,
the words “consistent,” “consistency.” When the above piece of document
D is to be retrieved, some users may use the query “consistent,” whereas
others will probably use the query “consistency,” or some other form of
this word. In order to obtain a common (unified) form for user queries and
the different word forms in the document, all word forms are/should be
transformed to one common form, namely to their lexical root (or stem); in
this case to “consist.”
 The operation of stemming introduces a partition of the words of a lan-
guage into⎯not necessarily disjoint⎯equivalence classes. Every equiva-
lent class consists of the words that have the same lexical root. We should
note, however, that there are languages (e.g., Hungarian) in which some
word forms can be stemmed to multiple lexical roots.
 For the English language, a widely used stemming algorithm is the Por-
ter algorithm,2 which is based on successively truncating the characters of
a word, according to grammatical rules for suffixes, etc., until the lexical
root of the word is obtained. In practice, a dictionary containing the lexical
roots of as many words as possible can also be used. Thus, the process of
stemming may reduce to dictionary look up. However, especially in agglu-
tinative languages (e.g., Hungarian) the number of word forms may be in
the billions. Because a stemmer is a software module that may/should be
used in real time (e.g., in stemming query words), the process of stemming
may not exceed a certain time limit. This is an important programming
problem. Stemming algorithms have been developed for several other lan-
guages as well.3 (Stemmers and stoplists exist for English, French, Spanish,

2 http://www.tartarus.org/~martin/PorterStemmer
3
 http://snowball.tartarus.org

74 4 Basics of Information Retrieval Technology

Portuguese, Italian, Romanian, German, Dutch, Swedish, Danish, Norwe-
gian, Russian, Hungarian, and Turkish.)

4.5 Inverted File Structure

Let E = {E1,…,Ej,…,Em} denote a set of entities to be searched in a future
retrieval system, and let

D = {D1,…,Dj,…,Dm} (4.3)

denote the documents corresponding to E. After word identification, stop-
listing, and stemming, the following set of terms is identified:

T = {t1,…,ti,…,tn}. (4.4)

The set T can be used to construct an inverted file structure as follows:

1. Sort the terms t1,…,ti,…,tn alphabetically. For this purpose, some ap-
propriate (fast) sorting algorithm should be used (e.g., quick sorting or
some other sorting algorithm depending on the number n of terms, on
the available (internal or external) memory for sorting. (see, e.g.,
(Weiss 1995).

2. Create an index table I in which every row ri contains exactly one
term ti together with the codes (identifiers) of documents Dj in which
that term ti occurs (Table 4.4).

Table 4.4. Index Table I

Terms in alphabetical
order

Codes of documents in
which the term occurs

t1 D11,…,D1k
…
ti Di1,…,Dis

…
tn Dn1,…,Dnp

 As every document Dj uniquely identifies its corresponding entity Ej, a
structure IF (inverted file) consisting of the index table I and of the entities
(master file) of set E can be constructed (usually on a disk; Fig. 4.1).
 The codes in the index table I can also contain the disk addresses (point-
ers) of the corresponding entities in the master file.

Construction of Index Table

4.5 Inverted File Structure 75

 The inverted file structure IF is used in the following way:

1. Let t denote a query term. A binary search (or other appropriate
search algorithm) locates t in table I, i.e., the result of the search is the
row:

[t | Dt1,…,Dtu]. (4.5)

2. Using the codes Dt1,…,Dtu, we can read the corresponding entities
Et1,…,Etu from the master file for further processing.

Index table I
Terms Codes

t1 D11,…, D1k
…
ti Di1,…, Dis

…
tn Dn1,…, Dnp

Master file

Entity
E1
…
Ej
…
Em

Fig. 4.1. Inverted file structure (IF).

Other data can also be stored in an inverted file structure, such as:

• The number of occurrences of term ti in document Dj.
• The total number of occurrences of term ti in all documents.
• And so on.

 The inverted file structure is a logical one. Its physical implementa-
tion depends on the properties of the particular computer hardware, op-
erating system, programming language, database management system,
etc., available.

76 4 Basics of Information Retrieval Technology

4.6 Term-Document Matrix

Just as before, let E = {E1,…,Ej,…,Em} denote a set of entities to be
searched in a future computerized retrieval system, and let

D = {D1,…,Dj,…,Dm} (4.6)

denote the documents corresponding to E. After word identification, stop-
listing, and stemming, the following set of terms is constructed

T = {t1,…,ti,…,tn}. (4.7)

The set T can be used for the construction of term-document matrix TD as
follows:

 There are several methods for computing the weights. Perhaps the most
obvious are:

 1. Binary weighting method:

=
otherwise

Dinoccurstif
w ji

ij 0
1

,
(4.8)

 2. Frequency weighting method:

wij = fij. (4.9)

 There are also more advanced methods that offer a more balanced and
realistic measurement of content (Belew, 2000), and these can be ex-
pressed in a unified manner as follows:

Construction of Term-Document Matrix TD
(i = 1,…,n, j = 1,…,m)

1. Establish fij: the number of times term ti occurs in document Dj, ∀i, j.

2. Construct the term-document matrix TD = (wij)n×m, where the entry wij
is referred to as the weight of term ti in document Dj. The weight is a
numerical measure of the extent to which the term reflects the con-
tent of the document.

4.6 Term-Document Matrix 77

Theorem 4.1. (Dominich 2002) The entries wij of a term-document matrix
TD = (wij)n×m can be computed using the following generalized weighting
method:

[] ()×
==

=≤≤
3 21

1
''

1

''

)max(ν νν n

k kjk jnk

ijij
ij

ww

w
n

w
w ,

where

[] []

,log

)(ln
max

321

3

2

1

1'

−+

×⋅⋅⋅=×=
≤≤

i

i

i

ij

k jnk

ij

ijij

F
Fm

F

fe
f

f
fglw

γγ γ

λ

λ

λ

and Fi denotes the number of documents in which term ti occurs; further
λ1, λ2, λ3, γ1, γ2, γ3 ν1, ν2, ν3 ∈ {0, 1, 2, 3, 4, ∞}.

 Proof. It is shown that the usual special cases of each factor (normaliza-
tion, local weighting, and global weighting) are obtained for certain values
of the parameters.

Normalization factor [n]:

 SUM: ν1 = 0, ν2 = 1, ν3 = 1; [n] = ()
=

n

k k jw
1

'

 COSINE: ν1 = 0, ν2 = 2, ν3 = 2; [n] = ()
=

n

k k jw
1

2'

 4th: ν1 = 0, ν2 = 4, ν3 = 1; [n] = ()
=

n

k kjw
1

4'

 MAX: 1 = 1, ν2 = 0, ν3 = ∞; [n] = '

1
max k jnk

w
≤≤

 NONE: ν1 = 0, ν2 = 0, ν3 = ∞; [n] = 1

Local weighting factor [l]:

 FREQ: λ1 = 1, λ2 = 0, λ3 = 0; [l] = fij

 LOG: λ1 = 0, λ2 = 0, λ3 = 1; [l] = ln(fij) + 1

78 4 Basics of Information Retrieval Technology

 The explicit forms of the weighting schemes widely used in practice are
as follows:

(a) max-tf; max-normalized method:

kjnk

ij
ij f

f
w

≤≤

=
1
max

.

(4.10)

(b) norm-tf, length-normalized method:

=

=
n

k kj

ij
ij

f

f
w

1
2

.

(4.11)

(c) tf-idf, term frequency inverse document frequency method:

×=
i

ijij F
mfw log ,

(4.12)

where Fi denotes the number of documents in which term ti occurs.

 MAXNORM: λ1 = 0, λ2 = 1, λ3 = 0; [l]= kj
nk

ij

f
f

≤≤1
max

Global weighting factor [g]:

 NONE: γ1 = 0, γ2 = 0, γ3 = 0; [g] = 1

 INVERSE: γ1 = 0, γ2 = 1, γ3 = 0; [g] =
iF

mlog

 SQUARED: γ1 = 0, γ2 = 2, γ3 = 0; [g] =
iF

m2log

 PROBABILISTIC: γ1 = 0, γ2 = 1, γ3 = 1; [g] =
i

i

F
Fm −log

 FREQUENCY: γ1 = 1, γ2 = 0, γ3 ≠ ∞; [g] =
iF

1
.

4.7 General Architecture of a Retrieval System 79

(d) norm-tf-idf, length normalized term frequency inverse document fre-
quency method:

×

×
=

=
n
k

k

kj

i

ij

ij

F
mf

F
mf

w

1

2

log

log
.

(4.13)

 A more recent weighting scheme that has given good results on large
databases is the Okapi-BM25 formula (Cummins and O’Riordan 2006):

5.0
5.0log

1
+

+−×
+−+

=
i

i

avg

j

ij

ij

ij F
Fm

l
l

bbkf

f
w ,

(4.14)

where k and b are tuning parameters, lj denotes the length (in arbitrary
units) of document dj, and lavg denotes average document length.

4.7 General Architecture of a Retrieval System

Figure 4.2 shows the general architecture of an IR system.

REPOSITORY

 QUERY MODULE INDEXING MODULE

USER

 INDEXES
 (inverted file structure)

 RANKING MODULE
Fig. 4.2. General architecture of an IR system.

• REPOSITORY. The entities (documents) to be searched are stored in a

central REPOSITORY (on computer disks). They are collected and en-
tered into the REPOSITORY manually or using specialized computer
programs.

80 4 Basics of Information Retrieval Technology

• INDEXING MODULE. Using the documents stored in the

REPOSITORY, the INDEXING MODULE creates the INDEXES in the
form of inverted file structures. These structures are used by the
QUERY MODULE to find documents that match the user’s query.

• QUERY MODULE. This module reads in the user’s query. The

QUERY MODULE, using INDEXES, finds the documents that match
the query (typically, the documents that contain the query terms). It then
passes the located documents to the RANKING MODULE.

• RANKING MODULE. This module computes similarity scores (using

INDEXES) for the documents located by the QUERY MODULE. Then,
the documents are ranked (sorted descendingly) on their similarity
score, and are presented to the user in this order. (This list is called a hit
list.) For the computation of similarity scores, several methods can be
used, and these are dealt with in subsequent chapters.

4.8 Elements of Web Retrieval Technology

4.8.1 World Wide Web

The World Wide Web (Web, for short) is a network of electronic docu-
ments stored on dedicated computers (servers) around the world. Docu-
ments can contain different types of data, such as text, image, or sound.
They are stored in units referred to as Web pages. Each page has a unique
code, called a URL (universal resource locator), which identifies its loca-
tion on a server. For example, the URL

http://www.dcs.vein.hu/CIR/i2rmeta/i2rmeta.cgi

identifies the Web page shown in Fig. 4.3. Pages are typically written in a
computer language called HTML (hypertext markup language). The num-
ber of Web pages is referred to as the size of the Web, which is estimated
at more than 12 billion pages to date.

4.8.2 Major Characteristics of the Web

In what follows, the major characteristics of the Web that are relevant for
IR are reviewed briefly.

4.8 Elements of Web Retrieval Technology 81

 Most Web documents are in HTML format and contain many tags. Tags
can provide important information about the page. For example, the tag
, which is a bold typeface markup, usually increases the importance of
the term to which it refers. In Fig 4.3, the tag <title> defines a title text for
the page.
 In traditional IR, documents are typically well structured. For example,
every scientific journal defines its own characteristic structure for authors
of research papers to follow. Similarly, books and newspaper articles have
their typical formats and structures. Such documents are carefully written
and are checked for grammar and style. On the other hand, Web pages can
be less structured (there is no generally recommended or prescribed format
that should be followed when writing a Web page). They are also more di-
verse:

• They can be written in many languages; moreover, several languages
may be used within the same page.

• The grammar of the text in a page may not always be checked very care-
fully.

• The styles used vary to a great extent.
• The length of pages is virtually unlimited (if at all, then the limits are

posed by, e.g., disk capacity, memory).

Web pages can contain a variety of data types, including:

• Text
• Image
• Sound
• Video
• Executable code

Many different formats are used, such as:

• HTML
• XML
• PDF,
• MSWord
• mp3
• avi
• mpeg
• etc.

82 4 Basics of Information Retrieval Technology

 While most documents in classical information retrieval are considered
to be static, Web pages are dynamic, i.e., they can be:

• Updated frequently.
• Deleted or added.
• Dynamically generated.

 Web pages can be hyperlinked, which generates a linked network of
Web pages. Various factors can provide additional information about the
importance of the target page, such as:

• A URL from one Web page to another page.
• Anchor text.
• The underlined, clickable text.

 The size of the Web, i.e., the number of Web pages and links between
them, is orders of magnitudes larger than the size of corpuses and data-
bases used in classical IR. For example, the size of classical test databases
(such as ADI, TIME, CISI, CACM, TREC databases, etc.) can be meas-
ured in the range from kilobytes to terabytes. The quantity of data stored
on the Web is practically incomparable to these sizes: it is very much lar-
ger and very hard to estimate (owing to the fact that the number of Web
pages can only be estimated very roughly and the size of a page can vary
to a very great extent).
 The number of users of, e.g., a university library system can be in the
range of, say, tens of thousands, whereas the number of users of a banking
intranet system may be in the range of, say, thousands. However, the num-
ber of Web users is in the range of billions, and it is increasing rapidly.
Moreover, the users of the Web are more diverse than the users of, say, a
university library system in terms of:

• Interest.
• Search experience.
• Languages spoken.
• And so on.

4.8 Elements of Web Retrieval Technology 83

 <html xmlns="http://www.w3.org/1999/xhtml" lang="en-US"
 xml:lang="en-US">

<head type="text/css">
<title>I2R Meta Search</title>

. . .
</head>

<body>
<ahref="../cikkek/IRFest_2005_Glasgow_Dominich.pdf"> CIR
white paper

. . .
</table>

</body>
 </html>

Fig. 4.3. Example of a Web page (above: screen image, below: fragment of its
HTML format).

 All of the aforementioned characteristics (and others not touched upon
here) represent challenges to Web retrieval. Web retrieval methods and
systems should be able to:

• Address these characteristics (e.g., take into account the languages spo-
ken by a user or his/her fields of interest).

• Cope with the dynamic nature of the Web (i.e., for instance, to observe
when a new page has been added or a page deleted, or to realize that a
link between two pages has disappeared, etc.).

• Scale up with size (i.e., for instance, the computational complexity, and
thus physical running time, of the retrieval methods and algorithms used
should be kept within polynomial limits such that running time does not
exceed certain acceptable limits).

84 4 Basics of Information Retrieval Technology

4.8.3 General Architecture of a Web Search Engine

The general architecture of a Web retrieval system (usually called search
engine) is shown in Fig. 4.4.
 The architecture contains all the major elements of a traditional retrieval
system. There are also, in addition to these elements, two more compo-
nents (Langville and Meyer 2006). One is, obviously, the World Wide
Web itself. The other is the CRAWLER, which is a module that crawls the
Web: it ‘walks’ from page to page, and reads the pages (collects informa-
tion). The functions of the modules are as follows:

• CRAWLER MODULE. In a traditional retrieval system, the documents
are stored in a centralized repository, i.e., on computer disks, specifically
in a particular institution (university library, computing department in a
bank, etc.). On the other hand, Web pages are stored in a decentralized
way in computers around the whole world. While this has advantages
(e.g., there are no geographic boundaries between documents), it also
means that search engines have to collect documents from around the
world. This task is performed by specialized computer programs that to-
gether make up the CRAWLER MODULE, which have to run all the
time, day and night. Virtual robots, named spiders, ‘walk’ on the Web,
from page to page, download them, and send them to the REPOSITORY.

• REPOSITORY. The Web pages downloaded by spiders are stored in
the REPOSITORY (which physically means computer disks mounted
on computers belonging to the company that runs the search engine).
Pages are sent from the REPOSITORY to the INDEXING MODULE
for further processing. Important or popular pages can be stored for a
longer (even a very long) period of time.

• INDEXING MODULE. The Web pages from the REPOSITORY are
processed by the programs of the INDEXING MODULE (HTML tags
are filtered, terms are extracted, etc.). In other words, a compressed rep-
resentation is obtained for pages by recognizing and extracting impor-
tant information.

• INDEXES. This component of the search engine is logically organized
as an inverted file structure. It is typically divided into several substruc-
tures. The content structure is an inverted structure that stores, e.g.,
terms, anchor text, etc., for pages. The link structure stores connection
information between pages (i.e., which page has a link to which page).
The spider may access the link structure to find addresses of uncrawled
pages. The inverted structures are physically implemented in com-
pressed ways in order to save memory.

4.8 Elements of Web Retrieval Technology 85

• QUERY MODULE. The QUERY MODULE reads in what the user
has typed into the query line and analyzes and transforms it into an ap-
propriate format (e.g., a numeric code). The QUERY MODULE con-
sults the INDEXES in order to find pages that match the user’s query
(e.g., pages containing the query terms). It then sends the matching
pages to the RANKING MODULE.

• RANKING MODULE. The pages sent by the QUERY MODULE are
ranked (sorted in descending order) according to a similarity score. The
list obtained is called a hit list, and it is presented to the user on the com-
puter screen in the form of a list of URLs together with a snippet (excerpt
from the corresponding page). The user can access the entire page by
clicking on its URL. The similarity score is computed based on several
criteria and uses several methods. (The most important methods will be
dealt with in Chapter 11.) The similarity scores are calculated based on a
combination of methods from traditional information retrieval and Web-
specific factors. Typical factors are: page content factors (e.g., term fre-
quency in the page), on-page factors (e.g., the position of the term in the
page, the size of characters in the term), link information (which pages
link to the page of interest, and which pages it links to), and so on.

WORLD WIDE WEB

CRAWLER MODULE

REPOSITORY

 QUERY MODULE INDEXING MODULE

USER

 INDEXES
 (inverted file structure)

 RANKING NODULE

Fig. 4.4. General architecture of a Web search engine.

86 4 Basics of Information Retrieval Technology

4.8.4 General Architecture of a Web Metasearch Engine

Web search engines are the most important retrieval systems used to find
information on the Web.
 Each search engine has its own ranking method, which is usually differ-
ent from one used by another search engine. On the other hand, the hit list
presented by a search engine can be very long in many cases (even in the
millions), albeit that users typically consult at most 10–20 hits.
 With the aim of returning fewer but more relevant pages (by taking
advantage of different ranking methods simultaneously), metasearch
engines can be developed. Typically, a metasearch engine reads in the user’s
request, sends it to several search engines, downloads some of the pages
they return in response to the query, and then produces its own hit list using
those pages. Figure 4.5 shows the general architecture of the I2RMeta
metasearch engine4 (whose interface screen is shown in Fig. 4.2) as an
example of such an architecture (Dominich 2003).

• INTERFACE MODULE. It is written in PERL and works online. The
communication with the Web server is performed by CGI. The query is en-
tered as a set of terms (separated by commas); the terms are Porter-
stemmed and then sent to four commercial spider-based Web search en-
gines (Altavista, Google, Northernlight, WebCrawler as of 2003) as HTTP
requests. The first 50 elements from the hit list of each Web search engine
are considered, and the corresponding Web pages are downloaded in paral-
lel (parallel user agent) for speed. Each Web page undergoes the following
processing: tags are removed and terms are identified, stoplisted, and Por-
ter-stemmed. The result is a repository of these pages on the server disk.
This repository is processed by the RANKING MODULE.

Altavista
 Query

Google
 Interface Module

Northernlight

 answer

WebCrawler

Repository
 Ranking Module

Fig. 4.5. General architecture of the Web metasearch engine I2Rmeta.

4 www.dcs.vein.hu/CIR

4.9 Measurement of Relevance Effectiveness 87

• REPOSITORY MODULE. It stores the data sent by the INTERFACE
MODULE on the server disk, i.e., the transformed Web pages
downloaded by the INTERFACE MODULE. This file is created “on the
fly” during the process of answering the query.

• RANKING MODULE. This module is written in C and works online.
Using the query and the Web pages in the repository, it creates a network
based on page links as well as terms occurring in both pages and query.
The hit list will contain the most important pages, i.e., the pages that are
most strongly linked to each other, starting from the query. The hit list is
sent to the INTERFACE MODULE, which screens it out (answer).

4.9 Measurement of Relevance Effectiveness

4.9.1 Relevance

In general, the meaning of the word relevance is: “A state or quality of being
to the purpose; a state or quality of being related to the subject or matter at
hand” [The Cambridge English Dictionary, Grandreams Limited, London,
English Edition, 1990]. Relevance is a complex and widely studied concept
in several fields, including philosophy, psychology, communication theory,
artificial intelligence, library science, and so on. Yet, it is not completely un-
derstood, nor is it mathematically defined in an acceptable way.

Relevance also plays a major role in information science. Moreover, in-
formation science emerged on its own and not as a part of some other disci-
pline because scientific communication has to deal not with any kind of in-
formation but with relevant information. The creators of the mathematical
information theory, Shannon and Weaver (1949), begin their landmark book
by pointing out that relevance is a central problem in communication: Is an
American news program relevant to a Russian who does not speak English?

4.9.2 Measures

The effectiveness of an IR system (or method) means how well (or badly)
it performs. Effectiveness is expressed numerically by effectiveness meas-
ures, which are elaborated based on different categories such as (Meadow
et al. 1999):

• Relevance
• Efficiency

88 4 Basics of Information Retrieval Technology

• Utility
• User satisfaction

Within each category, there are different specific effectiveness measures:

• Relevance: precision, recall, fallout, etc.
• Efficiency: cost of search, amount of search time, etc.
• Utility: worth of search results in some currency, etc.
• User satisfaction: user’s satisfaction with precision or intermediary’s

understanding of request, etc.

Relevance effectiveness is the ability of a retrieval method or system to
return relevant answers. The traditional (and widely used) measures are:

• Precision: the proportion of relevant documents out of those returned.
• Recall: the proportion of returned documents out of the relevant ones.
• Fallout: the proportion of returned documents out of the ones that are

nonrelevant.

Obviously, these measures are neither unmistakable nor absolute. To quote
Heine (1999): “The concept of relevance does not have a prior existence,
but is rather created ‘on the fly’, at least in some cases.” For instance, the
estimation of recall requires the a priori (i.e., before retrieval) knowledge
of the total number of relevant documents in the entire collection (for a
given query). However paradoxical this may sound, experimental results
have shown that users are more concerned with high recall than precision
(Su 1994).

Attempts to balance these measures have been made and various other
complementary or alternative measures have been elaborated. Cooper
(1968) suggests expected search length, i.e., the number of nonrelevant
documents before finding the relevant ones. Van Rijsbergen (1979) pro-
poses a weighted combination of recall and precision:

α × Precision × Recall
 1− ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ .

β × Precision + Recall

(4.15)

 Bollmann-Sdorra and Raghavan (1993) suggest another measure called Rnorm:

Rnorm = 0.5 × (1 + R + − I −), (4.16)

where R+ denotes the number of times a relevant document occurs before a
nonrelevant one in the retrieval order and I− is the number of times a non-
relevant document occurs after a nonrelevant one.

4.9 Measurement of Relevance Effectiveness 89

In what follows, the following three widely accepted and used measures
are defined:

• Precision
• Recall
• Fallout

The precision-recall measurement method of relevance effectiveness that
is being used in laboratories is also delineated.

Let D denote a collection of documents and q a query. Further,

• Δ ≠ 0 denotes the total number of relevant documents to query q.
• κ ≠ 0 denotes the number of retrieved documents in response to query q.
• α denotes the number of retrieved and relevant documents.

From the point of view of practice, it is reasonable to assume that the total
number of documents to be searched, M, is greater than the number of
those retrieved, i.e., |D| = M > Δ. The usual relevance effectiveness meas-
ures are defined formally as:

1. Recall ρ is defined as ρ =
Δ
α

.

2. Precision π is defined as π =
κ
α

.

3. Fallout ϕ is defined as ϕ =
Δ−

−
M

ακ
.

Figure 4.6 helps one to better understand the meaning of these measures.
From the above definitions 1., 2., 3., it follows that:

• 0 ρ 1.

• 0 π 1.

• ρ = 0 ⇔ π = 0.

• π = 1 ⇔ ϕ = 0.

• α = κ = Δ ⇔ (ρ = π = 1 ∧ ϕ = 0).

90 4 Basics of Information Retrieval Technology

Fig. 4.6. Visual representation of quantities that define

precision, recall, and fallout.

 Other measures are as follows (van Rijsbergen 1979, Meadow et al

π + ρ,

π + ρ − 1,

 ρ − ϕ
 ⎯⎯⎯⎯⎯ , 0 ≤ ϕ ≤ 1,

 ρ + ϕ − 2ρϕ

−
−

ρπ
1

2
11

2
1

11 ,

F-measure:
πρ

ρπ
+

2
,

Heine measure:
111

11
−+

−

ρπ

,

 Vickery measure:
31212

11
−+

−

ρπ

,

Meadow measure:
() ()

2
11

1
22 ρπ −+−

− .

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

1999):

4.9 Measurement of Relevance Effectiveness 91

From Salton and Lesk (1968):

)(2
11

1 Δ−
+Δ−

Δ−
=

= MM
R

M

i
inorm ρ ,

(4.25)

where Rnorm is normalized recall (for a given query), M is the number of
documents, and ρi is the recall at the ith hit in the ranked hit list.

4.9.3 Precision-Recall Graph Method

The precision-recall graph method is used for the measurement of re-
trieval effectiveness under laboratory conditions, i.e., in a controlled and
repeatable manner (Baeza-Yates and Ribeiro-Neto, 1999).
 This measurement method employs test databases (test collections).5

• The documents d are given.
• The queries q are given.
• The relevance list is given, i.e., it is known exactly which document is

relevant to which query.

 For every query, retrieval should be performed (using the retrieval
method whose relevance effectiveness is to be measured). The hit list is
compared with the relevance list (corresponding to the query of interest).
The following recall levels are considered standard:

0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.

(These levels can also be given as percents, e.g., 0.1 = 10%). For every
query, pairs of recall and precision are computed. If the computed recall
value is not standard, it is approximated. The precision values correspond-
ing to equal recall values are averaged.
 Let Rq denote the relevant documents to query q. Let us assume, for in-
stance, that

Rq = {d2, d4, d6, d5, d9, d1}, Δ = 6,

5
 For example, ADI, CRAN, TREC, etc.

Each test collection is manufactured by specialists, and has a fixed
structure:

92 4 Basics of Information Retrieval Technology

and that the retrieval method under measurement returns the following
ranked hit list (for q):

1. d1 ⎯
2. d8
3. d6 ⎯
4. d7
5. d9 ⎯

where the “⎯” sign marks a relevant document (as a result of comparison
with Rq).
 Document d1 is relevant, which means that one-sixth of the documents
of Rq have been retrieved, and so precision is 100% at the recall level one-
sixth. The third element, d6, is also relevant. Thus, precision is two-thirds
at recall level two-sixths. The fifth element of the hit list is d9, which is
also relevant. Hence, precision is three-fifths at the recall level three-
sixths.
 When the computed recall value r is not equal to a standard level, the
following interpolation method can be used to calculate the precision value
p(rj) corresponding to the standard recall value rj:

p(rj) = max p(r), j = 1,…,10.
 rj-1<r≤rj

(4.26)

It is known from practice that the values p(rj) are monotonically decreas-
ing. Thus, the value p(r0) is usually determined to have p(r0) ≥ p(r1). For
all queries qi, the precision values pi(rj) are averaged at all standard recall
levels:

=

=
n

i
jij rp

n
rP

1
)(1)(, j = 0,...,10,

(4.27)

where n denotes the number of queries used. Figure 4.7 illustrates a typi-
cal precision-recall graph (for the test collection ADI).

 The average of the values P(rj) is called MAP (mean average preci-
sion). MAP can also be computed just at the recall values 0.3, 0.6, and 0.9.
 Apart from MAP, the following measures can also be used:

• P@n (precision at n): only the first n elements of every hit list are con-
sidered; typical values for n are 10, 20, 30, 100.

• R-prec (R precision): for each query q, only the first Δq elements of the
hit list are considered (i.e., Δq = Rq).

4.9 Measurement of Relevance Effectiveness 93

0 0.2 0.4 0.6 0.8 1

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

recall

pr
ec

is
io

n

Fig. 4.7. Typical precision-recall graph (for the test collection ADI).

4.9.4 Uncertainty of Measurement

A test collection consists of three parts: documents, queries, and relevance
assessments. All three parts are fixed and⎯usually⎯are provided as plain
text files. Relevance assessments are produced by human experts and are
provided as a table or list indicating which document is relevant to which
query. Documents and queries typically are texts, shorter or longer, homo-
geneous or heterogeneous in content (e.g., taken from journals or newspa-
pers). Table 4.5 lists the names, the number of documents, and queries in
the most commonly used classical test collections.

Table 4.5. Parameters of Classical Test Collections

Name Number of documents Number of queries
ADI 82 35
MED 1033 30
TIME 423 83
CRANFIELD 1400 225
NPL 11429 93
CACM 3204 64
CISI 1460 111

94 4 Basics of Information Retrieval Technology

 In Dominich (2001), it is shown that the following relationship holds
for every query q:

RM
R
−

=
−)1(πρ

ϕπ
.

(4.28)

The left-hand side of Eq. (4.28) defines a surface in three-dimensional
Euclidean space called the effectiveness surface (Fig. 4.8). The effective-
ness surface has the property that it has query-independent shape but a
query-dependent actual position in space.

Fig. 4.8. A typical effectiveness surface. It has query-independent shape,

whereas its specific position in the space depends on the query and the number of
documents in the collection. C = recall (0 to 10 scale), F = fallout, P = precision

(0 to 10 scale).

 Let us denote the right-hand side of Eq. (4.28) by f (R). From R1 ≤ R2 it
follows that M − R1 ≥ M − R2, and thus f (R1) ≤ f (R2). In other words, f (R) is
monotonic with respect to R, i.e., R1 ≤ R2 ⇔ f (R1) ≤ f (R2). If we take R1 to
correspond to the query that has the lowest number of relevant documents,
R1 = Rmin (Rmin is the minimum number of relevant documents) and R2 to
correspond to the query that has the highest number of relevant documents,
R2 = Rmax (Rmax is the maximum number of relevant documents), we find
that the left-hand side of Eq. (4.28) is bounded for every query as follows:

4.9 Measurement of Relevance Effectiveness 95

f (Rmin) ≤
)1(πρ

ϕπ
−

 ≤ f (Rmax)

(4.29)

Table 4.6 shows the lower- and upper-bound values, f(Rmin) and f(Rmax) for
widely used test collections.

 Owing to these limitations, even if a retrieval method can perform better,
a test collection may not be ‘able’ to ‘observe’ it (or to ‘show’ it to us). Test
collections only allow us to ‘see’ those values of effectiveness measures that
are situated in the space region bounded by the lower and upper effective-
ness surfaces (regardless of the retrieval method being tested). These space
regions are specific for each test collection, as shown in Fig. 4.9:

Table 4.6. Lower- and Upper-Bound Values in Test Collections for the Effec-

tiveness Surface

Name Number of
documents

M

Minimum
number of
relevant
documents

Rmin

Maximum
number of
relevant
documents

Rmax

Lower-bound
value

f(Rmin)

Upper-
bound
value

f(Rmax)
ADI 82 2 33 0.025 0.673
MED 1033 9 39 0.009 0.039
TIME 423 1 18 0.002 0.044
CRANFIELD 1400 2 40 0.001 0.029
NPL 11429 1 84 0.0001 0.074
CACM 3204 1 51 0.0003 0.016
CISI 1460 1 155 0.0007 0.118
Genomics 2005 4591008 2 709 0.000000435 0.000154
Disk12 TREC 741856 14 1141 0.00001887 0.00154
Disk45 TREC 528155 3 448 0.00000568 0.000848
Wt2g 247491 6 148 0.0000242 0.000598
Wt10g 1692096 1 519 0.00000059 0.000306
Terabyte 25205179 4 617 0.000000158 0.0000244

96 4 Basics of Information Retrieval Technology

Lower and upper effectiveness surfaces (ADI) Lower and upper effectiveness surfaces (MED)

Lower and upper effectiveness surfaces (TIME) Lower and upper effectiveness surfaces (CRANFIELD)

Lower and upper effectiveness surfaces (NPL) Lower and upper effectiveness surfaces (CACM)

Fig. 4.9. Lower and upper effectiveness surfaces for classical test collections.

4.9 Measurement of Relevance Effectiveness 97

Lower and upper effectiveness surfaces (CISI)

Fig. 4.9. (Continued)

 Using Table 4.6, we can perform calculations to obtain the following
results.
 ADI allows for ‘seeing’ both precision and recall in the range 0.4 to 0.8,
but with fairly high fallout values and within a large range of approxi-
mately 0.97. MED and CRANFIELD allow for ‘seeing’ both precision and
recall in the whole range 0 to 1 with fairly low fallout values within a
range of approximately 0.378 and 0.252, respectively, dropping quickly for
precision values from 0 to 0.2, and then decreasing slowly. NPL allows for
‘seeing’ both precision and recall in the whole range 0 to 1 with fallout
values dropping quickly from the fairly high value of 0.666 to almost 0 at
very low precision values, and then remaining near 0. CACM allows for
showing both precision and recall in the whole range 0 to 1 with fairly low
fallout values throughout, dropping quickly from 0.141 to almost 0 at very
low precision values, and then remaining near 0. CISI allows for showing
both precision and recall in the whole range 0 to 1 with fairly high fallout
values at low to mid-precision values, dropping from 1 to almost 0, and
then remaining near 0. These results may help in selecting which test col-
lection to use for which purpose. Thus, if one wishes to measure precision
and recall in an entire spectrum at low fallout values, then CACM, MED,
or CRANFIELD is recommended. If, however, one wishes, for some rea-
son, to monitor the sensitivity to fallout of a retrieval method being tested,
then ADI or NPL would be recommended.

98 4 Basics of Information Retrieval Technology

4.10 Measurement of Search Engine Effectiveness

Owing to the characteristics of the Web, the measurement of relevance ef-
fectiveness of a Web search engine is, typically, user centered (Borlund
2003). It is an experimentally established fact that most users generally ex-
amine the first two pages of a hit list. Thus, the search engine should rank
the most relevant pages in the first few pages. The traditional measures
cannot always be computed (e.g., recall and fallout). This means that the
measurement of relevance effectiveness of search engines requires meas-
ures other than the traditional ones. When elaborating such new measures,
one tries to use traditional measures (e.g., precision that can also be calcu-
lated for a hit list of a search engine), but also takes into account various
characteristics of the Web. Several methods for the measurement of rele-
vance effectiveness of a search engine have been elaborated thus far, and
they can be grouped as follows:

 User-Based Methods. These methods measure user satisfaction. In
Nielson (1993), a method is given to measure utility and satisfaction. Su et
al. (1998) involved real users to measure the effectiveness of the following
search engines: Altavista, Infoseek, Lycos, OpenText. Tang and Sun

=×

20

1
)___(

420
1

i

th hitiofweight ,

(4.30)

as well as search length as equal to the number of irrelevant hits seen be-
fore getting i=2 relevant ones.

 Measurement of Precision. Chu and Rosenthal (1996) used ten que-
ries to measure the precision of the search engines Altavista, Excite, and
Lycos. A hit was relevant, irrelevant, or partially relevant (i.e., a page that
was irrelevant but pointed to a relevant one).
 In Gwizdka and Chignell (1999), a four-degree relevance scale (most
relevant, partially relevant, hardly relevant, irrelevant) was used to propose
different types of precisions:

• Best precision = the proportion of the most relevant hits.
• Useful precision = the proportion of the most relevant hits and of those

which point to them.
• Objective precision = the proportion of hits containing the query.

They measured the effectiveness of Altavista, HotBot, and Infoseek, and
found that Altavista’s best precision was the highest.

(2003) co-opted Ph. D. students to measure the 20 full precision for
Google, Altavista, Excite, and Metacrawler using the following formula:

4.10 Measurement of Search Engine Effectiveness 99

 Measurement of Recall. Clark and Willett (1997) proposed a method
for the measurement of relative recall using the merged hit lists of several
search engines. Shafi and Rather (2005) measured the recall and precision
of Altavista, Google, HotBot, Scirus, and Bioweb with regard to finding
scientific papers. Twenty queries were used from biotechnology, and the
first ten hits from every hit list were examined. The following four-degree
relevance scale was used: 3 = full paper, 2 = abstract, 1 = book, 0 = other.
A relative recall was defined as follows: the relative recall of a given
search engine was the proportion of the relevant hits returned by that
search engine out of the total number of relevant hits returned by all search
engines. They found that Scirus had the highest relative recall, whereas
Bioweb had the lowest.

 Measurement of Other Characteristics. Chu and Rosenthal (1996)
studied several characteristics of Altavista, Excite, and Lycos: coverage
(size of the index, update frequency of the index), search options (Boolean
search, truncation, proximity search).

4.10.1 M-L-S Method

Leighton and Srivastava (1999) proposed a general method for the meas-
urement of the extent to which a search engine is able to rank relevant hits
within the first n hits of the hit list (first n-precision). The principles of the
method are:

• Definition of relevance categories.
• Definition of groups.
• Weighting of hits.

 Each hit on a hit list returned in response to a query was assigned to
only one category. The hit list was divided into si groups having ci weights
(i = 1,...,m). The value of first n-precision was defined as the sum of the
weights of relevant hits divided by the maximum sum. The method was
applied to give a first 20-precision algorithm with which AltaVista, Excite,
HotBot, Infoseek, and Lycos were measured (in 1997). It was found that
AltaVista was the best.
 Based on the above principles and taking into account that most users
(85%) only assess at most the first two pages of a hit list (Silverstein et al.
1998), Dominich (2003) proposed the following measurement method,
known as the modified Leighton-Srivastava method (M-L-S method) The
M-L-S method measures the ability of a search engine to rank relevant hits
within the first five or ten hits of the hit list.

100 4 Basics of Information Retrieval Technology

M-L-S Method (First 5/10-Precision)

1. Select search engine to be measured.
2. Define relevance categories.
3. Define groups.
4. Define weights.
5. Give queries qi (i = 1,...,s).
6. Compute P5i and/or P10i for qi (i=1,...,s).
7. The first 5/10-precision of the search engine is:

=
=

s

i
iPk

s
Pk

1

1
, where k = 5 or k = 10.

 The relevance categories are:

• 0—category (irrelevant hit).
• 1—category (relevant hit).

When measuring first 5-precision, the first five hits are assigned to one of
two groups:

1. Group: the first two hits (on the grounds that they are usually on the
first screen).

2. Group: the following three hits.

When measuring first 10-precision, the first ten hits are assigned to one of
the following three groups:

1. Group: the first two hits.
2. Group: the next three hits.
3. Group: the rest of five hits.

Groups 1 and 2 are based on the assumption that, in practice, the most im-
portant hits are the first five (usually on the first screen).
 Hits within the same group receive equal weights. The weights reflect
the fact that the user is more satisfied if the relevant hits appear on the first
screen. For first 5-precision, the weights are:

1. For group 1: 10.
2. For group 2: 5.

 Obviously, instead of 10 and 5, other but proportional values may be
used. For the first 10-precision, the weights are:

1. For group 1: 20.
2. For group 2: 17.
3. For group 3: 10.

4.10 Measurement of Search Engine Effectiveness 101

 Just as before, obviously, instead of 20, 17, and 10, other but propor-
tional values may be used.
 The definition of queries is a very important step. However, it is almost
impossible to give a generally valid method for it. It is advisable to define
a topic first, and the queries after that. The topic should be broad enough to
be able to see how well the search engine performs at a general level. In
order to avoid bias, define both general and specialized queries. As most
users prefer unstructured queries, such queries should be defined. It is very
important that the weights be defined prior to obtaining any hits, or else
our assessments would be more subjective or biased (because, in this case,
we already know how the search engine ‘behaves’ for certain queries).
 The P5 measure is defined as

P5 =
5_35

5_10_

.5.1

.5.3.2.1

×−
×+×

−

−−

hit

hithit

hitmiss
hitrhitr

,

(4.31)

where
• r_hit denotes the number of relevant hits in the respective group.
• The numerator is the weighted sum of the relevant hits within the first

five hits.
• miss_hit denotes the number of missing hits,
• In the denominator, 35 is the weighted sum in the best case (i.e., when

the first five hits are all relevant): (2 × 10) + (3 × 5) = 35. For every
missing hit out of five, 5 is subtracted.

The measure P5 is given for the case in which multiple hits are not penal-
ized. If we want to penalize multiple hits, then a multiple hit is considered
as many different hits as its multiplicity.

Example 4.2

Let us assume that in response to query “WWW” three hits are returned
and that all are relevant. Thus, the numerator is (2 × 10) + (1 × 5) = 25.
The first two hits belong to the first group, so their weight is 10. The third
hit belongs to group 2; thus its weight is 5. The denominator is 35 − (2 × 5)
= 25. So, P5 = 25:25 = 1.
 Let the query be “VLSI.” Five hits are returned, out of which three are
relevant: the second, the third, and the fourth. Thus, the numerator is (1 ×
10) + (2 × 5) = 20, so P5 = 20:35 = 0.571. If the first three hits were rele-
vant, then P5 = [(2 × 10) + (1 × 5)] : 35 = 0.714. The two values obtained
for P5 are different, which reflects the ranking difference of relevant hits.
 Let us assume that for the query “Network” five hits are returned, and
these are relevant, but the third and the fifth are the same (i.e., we have a

102 4 Basics of Information Retrieval Technology

double hit). In this case, we have P5 = [(2 × 10) + (2 × 5)] : (35 − 1 × 5) = 1
(without penalty); and P5 = [(2 × 10) + (2 × 5)] : 35 = 0.857 (with penalty).
It can be seen that taking penalty into account yields lower effectiveness.

 The P10 measure is defined in a similar manner:

P10 =
10_141

10_17_20_

.10.1

.10.6.5.3.2.1

×−
×+×+×

−

−−−

link

hithithit

hitmiss
hitrhitrhitr

. (4.32)

The penalized version is similar to that for P5.

4.10.2 RP Method

We know that precision is defined as (Section 4.9.2):

k
rp = ,

(4.33)

where p denotes precision, k the number of returned items, and r the rele-
vant items out of the k returned.
 A Web metasearch engine uses the hit lists of search engines to produce
its own hit list. Thus, also taking into account the definition of precision, a
method to compute a relative precision (called as the RP method) can be
given (Dominich 2003). The idea of the RP method is that if the hits of a
metasearch engine are compared to the hits of the search engines used,
then a relative precision can be defined for the metasearch engine. We note
that earlier Clark and Willett (1997) defined a relative recall measure in a
similar manner.
 Let q be a query. Let V be the number of hits returned by the meta-
search engine being considered and T those hits out of these V that were
ranked by at least one of the search engines used within the first m of its
hits. Then, the relative precision RPq,m of the metasearch engine is calcu-
lated as follows:

V
TRP mq =, .

(4.34)

The value of m can be, e.g., m = 10 or m = 5, or some other value depend-
ing on several factors (the range of the measurement, etc.). The value of
relative precision should be computed for several queries, and an average
should be taken.

4.11 Exercises and Problems 103

Example 4.3

Let us assume that a metasearch engine uses four search engines. Let the
query q be “Download ICQ Message Archive,” and let us assume further
that the metasearch engine returns five hits, i.e., V = 5.
 By analyzing the hit lists of all the search engines, we see that the first
hit of the metasearch engine is the third on the hit list of the first search
engine, the second hit was the first in the second search engine, the third
was the fourth in the third search engine, the fourth was the second in the
fourth search engine, and the last one was the third in the second search
engine.
 Thus, T = 5, and for m = 10 the relative precision is RPq,10 = 5:5 = 1.

RP Method
(Relative Precision of a Web Metasearch Engine)

1. Select the metasearch engine to be measured.

2. Define queries qi, i = 1,...,n.

3. Define the value of m; typically m = 5 or m = 10.

4. Perform searches for every qi using the metasearch engine

as well as the search engines used by the metasearch engine, i =
1,...,n.

5. Compute relative precision for qi as follows:
i

i
mq V

T
RP

i
=, , i = 1,...,n.

6. Compute average:
=

n

i
mqi

RP
1

, .

The RP method relies heavily on the hypothesis that the hit lists of search
engines contain relevant hits. In other words, the RP measure is only as
good as the hit lists.

4.11 Exercises and Problems

The exercises below are best solved, and can only be really helpful, if there
is a computing infrastructure (computer, software, test databases) at your
disposal. Of course, some calculations (e.g., the computation of a weight)

104 4 Basics of Information Retrieval Technology

can be done by hand, but the actual usefulness of the retrieval technologies
can only be grasped and felt in a real computer setting.

1. Take a collection of texts of your choice (e.g., papers, stories, etc.).
Verify the validity of the power law using different methods: least
squares, linear regression. (Note: The collection should be fairly large
to obtain meaningful results. Thus, you should not work manually.
Write adequate computer programs.)

2. Create term-document matrices using the weighting schemes given in
Theorem 4.1. Observe, analyze, and compare the running times nec-
essary to create the matrices. Discuss memory usage to store the ma-
trices on disk and in the main memory. (Try to use matrix storage
methods that allow economical storage.) Observe and discuss the re-
lation between economical storage and the ease of using the matrices
in computations.

3. Analyze in more depth the characteristics of the World Wide Web.
Identify and discuss characteristics other than those presented in Sec-
tion 4.8.1.

4. Using a standard test collection or a data collection of your choice,
measure relevance effectiveness of a retrieval method of your choice
using the precision-recall graph method. Experiment with other inter-
polation (averaging) formulas [other than Eqs. (4.25) and (4.26); e.g.,
instead of maximum use average in Eq.(4.25)].

5 Lattice-Based Retrieval Systems

Have in mind the physical methods and mechanisms used
to instrument models.

(Calvin N. Mooers)

This chapter describes the application of lattices in retrieval systems
(Mooers, FaIR, BR-Explorer, Rajapakse-Denham, FooCA). The use of lat-
tices for visualization or navigation is not considered, nor are programming
and implementation issues dealt with, as these fall outside our scope.
 The goal of describing these systems is to present the way in which lat-
tices have been used to represent document structures, term relationships,
and term-document matrices in actual retrieval systems developed thus far.
 Mathematical properties (with proofs) of the lattices applied are estab-
lished. The principal finding is that they are not modular.
 Further, a method is given to transform a term-document matrix into a
Galois (concept) lattice.
 The chapter ends with exercises and problems that are designed to en-
hance understanding of the properties of the lattices applied.

106 5 Lattice-Based Retrieval Systems

5.1 Mooers’ Model

terms (i.e., to formally express the fact that words are not necessarily inde-
pendent of each other, which is a widely accepted hypothesis in many re-
trieval methods today). The model focuses on what Mooers calls symbols
(known today as terms) that together form a query and on the relationship
between the query and a subset of documents that can be selected from a
collection of documents.

5.1.1 Lattice of Documents

The document subsets can be formed from, e.g., a library collection
(books, articles, etc.). If one denotes a document subset by A and the entire
library collection by L = {D1,…,Dn}, then the document subsets A ⊆ D
form a Boolean algebra (℘(L), ∩, ∪, \) with respect to set intersection ∩,
set union ∪, and set complement \, where ℘(L) denotes the powerset of L,
i.e., the set of all subsets of L. In other words, the structure (℘(L), ∩, ∪, \)
is a complemented and distributive lattice.

5.1.2 Lattice of Unstructured Queries

A query Q is conceived as consisting of one or several terms (in the latter
case constructed from one-term queries). For example, the one-term query
Q = A is modeled as the following lattice: {0, A} (Fig. 5.1):

Fig. 5.1. One-term query Q = A represented as a lattice {0, A}, 0 ≤ A.

 A new lattice P can be obtained by taking the product × of one-term lat-
tices (Fig. 5.2):

 A

 0

Mooers (1959) seems to have been the first individual to offer a detailed
and comprehensive treatment of the application of the lattice concept in
IR. His model has the merit of being able to capture relationships between

5.1 Mooers’ Model 107

1. Let Ai denote (or correspond to) the one-element lattice {0, Ai}, i =

1,…,n.

2. The product lattice P =
n

i 1=
× {0, Ai} is given by the lattice P=(℘(T), ⊆),

where T = {A1,…,An}.

Fig. 5.2. Product P of two one-term lattices: {0, A} and {0, B}.

 The lattice P contains all the possible queries that can be formed using
the given terms. It can be seen that the lattice P is a Boolean algebra and
thus a complemented and distributive lattice.
 Retrieval is formally viewed as follows. Given a query Q, i.e., an ele-
ment of lattice P, there may be other elements in P preceded by Q, or ele-
ments that precede Q. Retrieval is some procedure that locates those ele-
ments of ℘(T) that precede and are preceded by Q. However, the retrieval
procedure is not described.

5.1.3 Lattice of Term Hierarchies

Mooers treats, very briefly, the case of term hierarchies. For example, the
term “clothing” is broader in sense than the term “shoe.” Thus, the follow-
ing lattice (reflecting a hierarchy) can be constructed:

 A

 0

 B

 0 0

 A B

 AB

108 5 Lattice-Based Retrieval Systems

 Taking into account hierarchical relations between terms should have an
impact upon retrieval. In such lattices, some elements may be preceded by
more than one element; this is referred to as a “system with weak hierar-
chy” (e.g., the U.S. Patent Office classification). After appropriate reduc-
tions, another lattice can be obtained from this one that does not allow for
any element to be preceded by more than one element. Such a reduced lat-
tice is referred to as a “system with strong hierarchy” (e.g., the Dewey
Decimal classification).

5.1.4 Lattice of Boolean Queries and Documents

Mooers also outlines the case of Boolean (i.e., structured) queries (which
he calls “characters with logic”). He starts by emphasizing that, “symbolic
logic is a stylized view of things, and the symbolism or method which is
found useful in that discipline need not necessarily be the most appropriate
symbolism for information retrieval.”
 Given the terms A1,…,An, a Boolean query is conceived as being an
element of a lattice (L, ⊆) obtained as follows:

1. The atoms are A1,…,An.
2. The elements greater than the atoms, and immediately above them,

are given by the Cartesian product {A1, ¬A1} × {A2, ¬A2}× …× {An,
¬An}, where ¬ denotes negation.

3. The elements of point (2) are “topped” by the maximal element of the
lattice.

If the query is a conjunction of terms (e.g., A1 A2), all terms are equally
relevant to the subject matter of the document. When the query is a

1

clothing

shoe

0

5.1 Mooers’ Model 109

disjunction of terms (e.g., A1 V A2), then⎯based on the interpretation of V
in mathematical logic⎯either one, or either two, and so on either all terms
may be relevant to the subject matter of the document. “This is ridiculous,”
⎯Mooers says. He continues by asking: “For example, how good is a
retrieval system that treats the query

red V square

as a logical expression?” Thus, he notes:

• Disjunction should not be a permissible operation in queries for re-
trieval; the only permissible operations should be conjunction and nega-
tion.

• On the other hand, a document should be represented as a lattice using
only negation and disjunction of terms.

 For example, if two terms are used, say A and B, then all possible
documents (i.e., the ‘space’ whose element a document may be) are given
by the lattice shown in Fig. 5.3.
 The document lattice can be obtained as a product of two-element lat-
tices. Figure 5.4 shows the two 2-element lattices whose product lattice is
shown in Fig. 5.3.

Fig. 5.3. Document lattice for Boolean queries using two terms A and B.

1

0

A B ¬A ¬B

AVB AV¬B ¬AVB ¬AV¬B

110 5 Lattice-Based Retrieval Systems

Fig. 5.4. The two 2-element lattices whose product is the lattice in Fig. 5.3.

The query lattice is similarly generated, but instead of disjunction we have
conjunction. Mooers does not treat retrieval for such representations. At
the same time, he makes a number of general and interesting observations:

• If a term A has not been used as an index term for a document, then the
query “¬A” should not retrieve that document merely because it does
not contain A. In other words, in retrieval, absence is not necessarily
synonymous with negation.

• It may be important to know the frequency with which terms are used.
Thus, one can attach frequencies as “scalars” to lattice elements.

• In Boolean logic, the operations commute, e.g., A V B is the same as B
V A. If the information in a document is structured as a lattice, the ideas
are commutative. But this is not always the case. The words that make
up a term may form a sequence, but they do not always commute. For
example, “street lamp” as a term may be modeled formally as the con-
junction “street lamp” but it is not equal, in general, to the commuted
conjunction “lamp street,” as it should if taken as a Boolean expres-
sion of mathematical logic. In the term “street lamp,” the words “street”
and “lamp” do not form a hierarchy (and thus not a lattice); they form
some other structure (e.g., a grammatical structure called a compound
word).

5.2 The FaIR System

For a long time after Mooers’s paper was published, the application of lat-
tices in information retrieval was seen more as a theoretical possibility or
curiosity. There were no further developments until Priss (2000) proposed
a practical retrieval system, called FaIR, based on lattices, and thus
showed that such a retrieval system could be built effectively.

1

0

A ¬A

1

0

B ¬B

5.2 The FaIR System 111

 The FaIR system uses domain knowledge (in the form of a thesaurus) to
generate term lattices. The thesaurus consists of a set T of terms that is par-
titioned into classes (called facets). The facets are lattices. Every node in
such a lattice represents a term (word or phrase), and the lattice expresses
thesaurus relationships such as “broader than,” “narrower than,” etc. Every
such lattice, i.e., facet, is conceptually complete (their terms express one
concept).
 Documents are represented by (or assigned to) as many terms as needed,
but at most one term from one facet. Documents that contain only one of
the terms of the facet are mapped to that concept. Documents that contain
several terms of the facet are mapped to the join of the concepts. Figure 5.5
illustrates an example of a facet lattice.

Fig. 5.5. Facet lattice “programming language.” A document containing both CGI

and Java is assigned to the node “WWW programming language,” which is the
join of these terms.

The elements of the facet lattice may be formally conceived as containing
(i.e., being equal to the union of) the elements that are below it (equiva-
lently, down to atoms). Every document is mapped to a single concept
over all facets.
 A query Q is a Boolean expression of terms. For example, the query Q =
”Java” retrieves the documents containing exactly and only the term
“Java” (in the exclusive search) and the documents that also contain the
more general term “WWW programming language” (in the inclusive
search).

WWW programming language

Java

Programming language

Manual

CGI X-KL Javascript

0

112 5 Lattice-Based Retrieval Systems

5.3 Galois (Concept) Lattice-Based Models

5.3.1 Galois (Concept) Lattice

Concepts are basic units of language and thought. The extension G of a
concept consists of all objects that belong to it. The intension M of a con-
cept consists of all attributes (properties) that apply to the elements of its
extension. A formal context K is defined as a binary relation, i.e., as the set
of relationships between objects and attributes to denote which object has a

K = (G, M, I), I ⊆ G × M. (5.1)

X → X I = {m ∈ M | g I m, ∀g ∈ X}, (5.2)

i.e., the set of attributes common to all objects from X, and

Y → Y I = {g ∈ G | g I m, ∀m ∈ Y}, (5.3)

i.e., the set of objects described by at least one attribute from Y. A formal
concept (A, B) is defined as

(A, B) is a formal concept ⇔

(A ⊆ G, B ⊆ M, A = B I, B = AI).
(5.4)

The set A is the extent and the set B is the intent of the formal concept. The
set of formal concepts becomes a poset [notation: ℜ(K)] with the ordering
relation

(A1, B1) ≤ (A2, B2) ⇔

A1 ⊆ A2 (⇔ B2 ⊆ B1).
(5.5)

The poset ℜ(K) can be turned into a complete lattice, denoted by ℜ(K),
with the following definitions of infimum and supremum:

infimum: j (Aj, Bj) = ()()II

j jj j BA ,

supremum: Vj (Aj, Bj) = ()()
j j

II

j j BA , .

(5.6)

The following derivation operations are defined for arbitrary X ⊆ G and
Y ⊆ M:

given property (Wolff 1993, Kim and Compton 2004, Wille 2005):

5.3 Galois (Concept) Lattice-Based Models 113

Concept lattices are useful for the representation of conceptual structure of
data. There are efficient procedures for constructing formal concepts and
the concept lattice from a given formal context (Kim and Compton 2004,
Wille 2005).

5.3.2 Term-Document Matrix and Concept Lattice

Cheung and Vogel (2005) view the term-document matrix TDn,m (in its
Boolean form, i.e., adjacency matrix, Table 5.1) as a formal context that is
transformed into a concept lattice (Fig. 5.6).

Table 5.1. Term-Document Matrix

 D1 D2 D3 D4
T1 1 1 0 0
T2 1 0 1 0
T3 0 1 0 1
T4 0 0 1 1

Thus, term T1 occurs in documents D1 and D2, term T4 occurs in documents
D3 and D4, and so on. The term-document matrix can be transformed into a
concept lattice using the following method:

Generation of a Concept Lattice
from the Term-Document Matrix

1. The least element, 0 (as well as the greatest element, 1) of the
concept lattice is introduced artificially.

2. The lattice is built in a bottom-up fashion (i.e., from 0 to 1).

3. Every term Ti corresponds to an atom.

 j (j = 1,...,m), if TDi,j = TDk,j = 1, then document Dj is
the meet (superconcept) of terms Ti and Tk.

This method can be applied even when the TD matrix is not Boolean, i.e.,
when it contains (nonbinary) weights. In this case, the condition in point 4
is rewritten as TDi,j, TDk,j ≠ 0. (The superconcepts, as given by the TD
matrix, may not be unique. However, in the concept lattice only one is
allowed.)

4. For every column

114 5 Lattice-Based Retrieval Systems

Fig. 5.6. Concept lattice obtained from the term-document matrix of Table 5.1.

A method to obtain a lattice from a term-document matrix is
given in (Godin et al. 1989).

Each element of the lattice is a couple (d, t) such that

• d is the set of documents described by at least the terms in t.
• t is the set of terms common to all the documents in d.

Thus, t is the set of terms appearing in a conjunctive query retrieving
exactly the documents in d. The set of all such couples is a lattice with the
following partial order defined from the corresponding order on the term
sets:

c1 = (d1, tl) < c2 = (d2, t2) ⇔ t1 ⊂ t2. (5.7)

Equivalently,

t1 ⊂ t2 ⇔ d2 ⊂ d1. (5.8)

The partial order is used to generate the Hasse diagram of the lattice.
There is an edge (cl, c2) if cl < c2, and there is no other element c3 such
that cl < c3 < c2 .

1

0

T1 T2 T3 T4

D1 D2 D3 D4

5.3 Galois (Concept) Lattice-Based Models 115

5.3.3 BR-Explorer System

Messai et al. (2006) propose a retrieval system called BR-Explorer based
on concept lattices. The term-document Boolean matrix (conceived as a
formal context) is first transformed into a concept lattice L. A query Q is
conceived as being a set of terms (attributes). In order to answer query Q,
this is inserted into the concept lattice L first (e.g., by building L from
scratch, or using some more efficient method as suggested by Messai
et al.).
 Relevance is defined as follows. The document d is relevant to query Q
if they share at least one attribute. Messai et al. give a retrieval method
(i.e., traversal of the concept lattice) that retrieves documents already
ranked by their relevance degree.

5.3.4 Rajapakse-Denham System

Rajapakse and Denham (2006) proposed another application of lattices to
IR. Documents and queries are represented as individual lattices. Concepts
extracted from documents are used to construct a lattice. A document or
query is conceived as a structure of objects, attributes, and their relation-
ships from which a lattice is generated. The atoms are the elements con-
sisting of objects that have identical attributes. On the next level, the ele-
ments are the objects that share most of their attributes, and so on. The
smallest element of the lattice, at the bottom, is an artificial empty element,
whereas the largest element, on the top, is the union of all the objects.
 Retrieval is defined as follows. The relevance of a document to a query
is determined on the basis of their common concepts. This is achieved by
comparing nodes of the query lattice with the nodes of the document lat-
tice. A partial match between the query lattice and the document lattice is
defined as being the meet between their corresponding objects and attrib-
utes. When any of these two meets are empty, a keyword match is applied.
 Rajapakse and Denham showed that their model worked by building an
experimental system whose relevance effectiveness was measured on the
Cranfield test collection. Moreover, the system was enhanced with a (per-
sonalized) learning strategy. In a relevance feedback process, all the terms
of the query that are not present in a relevant document are added to that
document. Weighting strategies were also used to refine the model.

116 5 Lattice-Based Retrieval Systems

5.3.5 The FooCA System

The FooCA system applies formal concepts to enhance Web retrieval
(Koester 2006a,b, 2005). The system runs under Linux and is written in
PERL. FooCA lets the user enter a query, which it sends to Google (other
Web search engines can also be used).
 The hit list returned by the search engine is used to construct a formal
context and formal concepts as follows. The snippets (i.e., the short ex-
cerpts returned by the search engine) are used to extract terms. If there is
no snippet, then the page address is used instead. The URLs of pages are
viewed as objects, whereas its terms are viewed as attributes.
 The hit list returned by the search engine is presented to the user as a ta-
ble in which the rows correspond to objects (in the ranked order given by
the search engine) and the columns to attributes. The table can be navi-
gated using the mouse, and the corresponding row is highlighted. When
the user clicks on a row, he/she is taken to the corresponding page.
 The table can also be used for query refinement. If the user clicks on an
attribute, then he/she can launch another search using the clicked attribute
as the query or he/she can include or exclude that term into/from the origi-
nal query.
 FooCA can be used to visualize the hierarchy of formal concepts, which
helps the user to assess the hits better and thus to know which hit to view
first.

5.3.6 Query Refinement, Thesaurus Representation

Carpineto and Romano (2005) offer an excellent overview of other uses of
concept lattices in retrieval. One such application of concept lattices is
query refinement. Given a Boolean query (i.e., a Boolean expression of
terms), the matching documents are found first. Then, the set of common
terms in the retrieved documents is determined and used to build a concept
lattice. The query can be refined by choosing the most general term (con-
cept) that contains all the query terms.
 Another use of lattices in retrieval is the representation of a thesaurus as
a concept lattice by taking into account the ordering suggested by the the-
saurus. The concept lattice of a document collection may be used as an un-
derlying clustering structure. The query is merged into this lattice. Each
document is ranked according to the shortest path between the query and
the document concept.

5.4 Properties of the Lattices Applied 117

 Concept lattices can also be used to bound the search space or for navi-
gational purposes. A possible application relates to Web searching. A set
of pages returned by a search engine is parsed, and a concept lattice is built
using the pages as objects and the terms as attributes. The user is presented
with this lattice to initiate the next search interaction.

5.4 Properties of the Lattices Applied

As seen in the retrieval systems that have been described, lattices are used
as mathematical models of the entities involved: objects and their relation-
ships (document sets, structure of a document, within document-term rela-
tionships, queries, term relationships in general, and concepts). These lat-
tices have different meanings (or roles) such as query, document, or
concept. According to their role, they are subjected to appropriate process-
ing. Retrieval is defined as a matching between a document and a query
lattice, or between lattices (a query lattice and a document lattice). Differ-
ent specific matching algorithms were proposed.
 The lattices used are complex (albeit that there are attempts to find
methods to reduce their complexity), and their construction is not an easy
task.
 Godin et al. (1998) showed that the number H of nodes in a concept lat-
tice has linear complexity with the number n of documents:

H = O(n⋅2k), (5.9)

where O denotes “big-Oh” (upper bound) from computational complexity,
and k denotes the maximum number of terms/document. Experimental re-
sults showed that the ratio H/n was fairly constant and much lower than 2k.
 Cheung and Vogel (2005) applied SVD (singular value decomposition)
to reduce the size of the term-document matrix, whereby the corresponding
lattice became considerably smaller than the one corresponding to the
original matrix.
 From a purely formal point of view, the application of lattices in re-
trieval systems can be characterized as follows. Let

T = {t1, t2,…,tn} (5.10)

denote a set of elements (e.g., terms, documents, etc.). Several types of lat-
tices are defined over T, such as:

• Atomic, complete.
• Boolean algebra.
• Complete, atomic, complemented, nonmodular (hence not distributive).

118 5 Lattice-Based Retrieval Systems

• Complete, atomic, nonmodular (hence not distributive), not comple-
mented.

We show now that, in Mooers’s model, the following property holds:

Theorem 5.1. The lattices of Boolean documents and queries are
1. Atomic and complete.
2. Complemented.
3. Not modular.

 Proof (using Fig. 5.3 as a model). Point (1) is straightforward. To prove
point (2), note that the complement AC of any atom A is equal to any ex-
pression of which A is not a member. The complement AC of any nonatom
A is equal to its negated counterpart. For point (3), we give a counterex-
ample. By definition, a lattice L is modular if

(∀A, B, C ∈ L for which A ≤ C)
A ∨ (B ∧ C) = (A ∨ B) ∧ C.

For example, A ⊆ C = {A, B}, i.e., A ≤ (A ∨ B) (recall that ∨ = ∪ and
∧ = ∩). By taking B = {¬A, ¬B}, we now have

A ∪ ({¬A, ¬B} ∩ {A, B}) = A ∪ 0 = A,

which is not equal to

(A ∪ {¬A, ¬B}) ∩ {A, B} = 1 ∩ {A, B} = {A, B}.

Further, we can prove that the facet lattices used in the FaIR system have
the following property:

Theorem 5.2. The facet lattice is
1. Atomic and complete.
2. Not modular.

 Proof. Point (1) is straightforward. For point (2), we give a counterex-
ample (using Fig. 5.5). For A = ‘X-KL’, B = ‘CGI’ and C = ‘Manual’, we
have A ≤ C, and

A ∪ (B ∩ C) = A ∪ 0 = “X-KL”,

which is not equal to

(A ∪ B) ∩ C = “Programming language” ∩ C = “Manual.”

 Before proceeding with the analysis of the properties of lattices used in
retrieval systems, we introduce further concepts related to lattices.

5.4 Properties of the Lattices Applied 119

Definition 5.1. Two lattices (L1, ∧1, ∨1) and (L2, ∧2, ∨2) are isomorphic if
there exists a bijective function f: L1 → L2 such that

f(a ∧1 b) = f(a) ∧2 f(b),

f(a ∨1 b) = f(a) ∨2 f(b), ∀ a, b ∈ L1.
(5.11)

Definition 5.2. The structure (L1, ∧, ∨), where L1 ⊆ L and L1 ≠ ∅, is a
sublattice of the lattice (L, ∧, ∨) if

a ∧ b ∈ L1, a ∨ b ∈ L1, ∀a, b ∈ L1.
(5.12)

Definition 5.3. A lattice L1 can be embedded into a lattice L2 if there exists
a sublattice of L2 isomorphic to L1.

 There is an important relationship between the pentagon lattice and
nonmodularity, namely:

Theorem 5.3. (Burris and Sankappanavar, 2000) A lattice L is not modular
if and only if the pentagon lattice can be embedded into L.

 Proof. It is clear that if the pentagon lattice can be embedded into a lat-
tice L, then L is not modular (because the pentagon lattice itself is not
modular; see Section 3.6). In order to prove the reverse, let us assume that
L is not modular. This means that for A, B, C ∈ L such that A ≤ C we have
A ∨ (B ∧ C) < (A ∨ B) ∧ C. Let D = A ∨ (B ∧ C), then

B ∨ D = B ∨ (A ∨ (B ∧ C)) =
B ∨ ((B ∧ C) ∨ A) =
(B ∨ (B ∧ C)) ∨ A =

B ∨ A.

Now let E = (A ∨ B) ∧ C; then

B ∧ E =
B ∧ ((A ∨ B) ∧ C) =
(B ∧ (A ∨ B)) ∧ C =

B ∧ C.

D < E by assumption. Also B ∧ C < A ∨ (B ∧ C) = D. Thus B ∧ C < D < E,
and so

B ∧ C <
B ∧ D <

B ∧ E = B ∧ C.

120 5 Lattice-Based Retrieval Systems

Hence, B ∧ D = B ∧ E = B ∧ C. Likewise, B ∨ E = B ∨ D = B ∨ A. Figure
5.7 shows the copy of the pentagon lattice in L.

Fig. 5.7. Copy of the pentagon lattice as an embedded lattice.

 Wille (2005) gives many examples of concept lattices, which model a
wide range of different real situations:

• Geography (bodies of water).
• Sociology (economic concepts of young persons).
• Geometry (types of triangles, inversion of a circle).
• Medicine (examination of anorectic patient, functional rooms in a hospi-

tal, Ph-level of children with diabetes).
• Tourism (leisure activities).
• Information science (information and knowledge processing).
• Urbanism (town and traffic).
• Music (musical attributes).
• Biology (animals).

 The concept lattice of the Ph-level of children with diabetes is shown in
Fig 5.8. (This concept lattice was generated using the data from 111 chil-
dren and 22 attributes in collaboration with medical experts.) It can be seen
that this concept lattice is nothing other than the pentagon lattice, and
hence it is not modular.

C ∧ B

D

E

B ∨ A

B

5.4 Properties of the Lattices Applied 121

Fig. 5.8. Concept lattice of Ph-level of children with diabetes.

 If one examines the other lattices given by Wille, it turns out that other
concept lattices (e.g. those of economic concepts of young persons, of
types of triangles, and of animals) also have sublattices isomorphic with
the pentagon lattice, which means that they are not modular. Indeed, we
can show that in general:

Theorem 5.4. Galois (concept) lattices are not modular.

 Proof. A lattice L is, by definition, modular if

(∀A, B, C ∈ L for which A ≤ C)

A ∨ (B ∧ C) = (A ∨ B) ∧ C.

For Galois lattices, the definition of modularity becomes

(∀(X1, X2), (Y1, Y2), (Z1, Z2) ∈ L such that (X1, X2) ≤ (Z1, Z2))

(X1, X2) ∨ ((Y1, Y2) ∧ (Z1, Z2)) =

((X1, X2) ∨ (Y1, Y2)) ∧ (Z1, Z2).

Using the definitions of join ∨ and meet ∧ in concept lattices, and the hy-
pothesis (X1, X2) ≤ (Z1, Z2), we rewrite the modularity condition as follows:

((X1 ∪ (Y1 ∩ Z1))II, X2 ∩ Y2
II) =

((X1 ∪ Y1)II ∩ Z1, ((X2 ∩ Y2) ∪ Z2)II),

0

ph dangerous

ph pathological

1

ph normal

122 5 Lattice-Based Retrieval Systems

which is equivalent to

(((X1 ∪ Y1) ∩ Z1)II, X2 ∩ Y2) =

((X1 ∪ Y1)II ∩ Z1, ((Z2 ∩ (Y2 ∪ Z2)II).

Let us take now (X1, X2) ≤ (Y1, Y2), i.e., X1 ⊆ Y1, Y2 ⊆ X2. Then, the previous
condition is rewritten as

((Y1 ∩ Z1)II, Y2) =

(Y1
II ∩ Z1, ((Z2 ∩ (Y2 ∪ Z2)II).

(Y1 ∩ Z1)II = Y1
 ∩ Z1;

and when

Y2 = (Z2 ∩ (Y2 ∪ Z2)II = Z2 ∩ (Y2 ∪ Z2).

But if Y2 ⊂ Z2, then Z2 ∩ (Y2 ∪ Z2) = Z2 ∩ Z2 = Z2, which is different from
Y2.

 However, in nonmodular lattices certain pairs of elements may satisfy
the modularity condition.

Definition 5.4. An ordered pair (A, B) of elements⎯i.e., in this order A is
the first element of the pair and B is the second element of the pair⎯of a
lattice L is referred to as a modular pair (notation: AMB) if

(∀ C ∈ L such that C ≤ B)
C ∨ (A ∧ B) = (C ∨ A) ∧ B.

(5.13)

 If A and B are not modular pairs, then this is denoted by AMB. Albeit
that Galois (concept) lattices are not, in general, modular, in the concept
lattices in Wille (2005), which all have a sublattice isomorphic to the pen-
tagon lattice, there are modular pairs that correspond to the following
modular pair in the pentagon lattice:

0 ≤ x
0 ∨ (x ∧ y) = 0 ∨ x = x =

(0 ∨ x) ∧ y = x ∧ y
= x.

(5.14)

This means that y and x are a modular pair: yMx. A Galois lattice has a
sublattice isomorphic with the pentagon lattice. Hence, it also has a modular

The equality holds when (Y1 ∩ Z1)II = Y1
II ∩ Z1, which is true because

Y1
II = Y1, and so we have:

5.5 Exercises and Problems 123

pair of elements. We should note, however, that xMy. We have x ≤ y, but x
∨ (z ∧ y) = x, which is not equal to (x ∨ z) ∧ y = y. This means that x and y
are not a modular pair: xMy.

 It is known that the logical propositions of mathematical logic form a
complemented and distributive lattice ({T, F}, V, , ¬). As concept lat-
tices are not modular (Theorem 5.4), they are not distributive either.
Hence, the main difference between concept lattices and the lattice of
propositions relates to the presence/absence of distributivity. In logic, dis-
tributivity is a property that connects conjunction and disjunction and is
the expression of compatibility between any two propositions P and Q in
the sense that

(P Q) V (P ¬Q) = P V (Q ¬Q) = P. (5.15)

The fact that concept lattices are not distributive means that, in general,
there are objects and/or properties that are not compatible, i.e., about
which we cannot always reason in the sense of mathematical logic. For ex-
ample, in the concept lattice of Fig. 5.6, we have

(D1 D2) V (D1 ¬D2
C) = T1, (5.16)

which means that reasoning with documents D1 and D2 does not result in
some other document, but rather in a term (which is a different type of en-
tity). In other words, in concept lattices, reasoning may lead to an object
having a different nature or quality than the nature of objects on which rea-
soning has operated (a situation unimaginable in mathematical logic).

5.5 Exercises and Problems

1. Using a document collection of your choice, construct the corre-
sponding concept lattice (using the term-document matrix).

2. Show that facet lattices are not distributive.

3. Are concept lattices uniquely complemented?

4. Is the Boolean algebra of documents uniquely complemented?

5. Are concept lattices orthomodular?

6 Boolean Retrieval

To give expression to the fundamental laws of those operations of the mind
by which reasoning is performed in the symbolic language of

Calculus…but did not try to treat the mysterious depths of actual thought.
(George Boole)

The Boolean retrieval method is a very important one as it is widely used
in database systems (e.g., Oracle, SQL) and World Wide Web search
engines. In principle, it is a simple method, but all the more important for
that.
 This chapter describes the Boolean retrieval method (both formally and
using an example) and the application of lattices in Boolean retrieval. An
effective method is presented to answer Boolean queries in relational
databases.
 The chapter ends with exercises and problems that are designed to
promote a deeper understanding of the theory and applications of Boolean
retrieval.

126 6 Boolean Retrieval

6.1 Boolean Retrieval Method

The Boolean retrieval method, which is used by virtually all commercial
database and retrieval systems today, is based on mathematical logic and
set theory. Both the documents to be searched and the user’s query are
conceived as sets of terms. Retrieval is based on whether or not the docu-
ments contain the query terms. There is a finite set

T = {t1, t2,...,tj,...,tm} (6.1)

of elements called terms (e.g., words or expressions—which may be
stemmed—describing or characterizing documents such as, e.g., keywords
given for a journal article), and a finite set

D = {D1,...,Di,...,Dn}, Di ∈℘(T) (6.2)

of elements called documents.
Traditionally, a “real” document can be a journal article (or its abstract

or title), or a newspaper article, etc. These documents are formally
conceived, for retrieval purposes, as being represented by sets of terms.
Practically, the original document and its representation are two different
entities. In principle, however, from a formal mathematical point of view,
it is not a restriction to refer to document representations as documents, for
two reasons:

• There is a correspondence between the original document and its
representation.

• For retrieval purposes, the document representation is used rather than
the original document.

 Given a Boolean expression—in a normal form—Q called query is
express as

Q =)(jjk
θ∨∧ , θj ∈ {tj, ¬tj}. (6.3)

Equivalently, Q can also be given in a disjunctive normal form. As any
Boolean expression can be transformed into an equivalent normal form
[i.e., the original Boolean expression and its normal form have the same
logical value for the same truth values of the variables (Kneale and Kneale
1962)], any query Q, which may be any arbitrary Boolean expression of
terms, can be transformed into an equivalent normal form as shown by Eq.
(6.3). Viewing Q as a normal form allows for a compact formal description
of the Boolean retrieval method:

6.1 Boolean Retrieval Method 127

1. Sets Sj of documents are obtained that match Q, i.e., Sj = {Di|θj ∈ Di},
where ¬tj ∈ Di means tj ∉ Di.

2. The documents that are retrieved in response to Q are those that are
the result of set operations corresponding to the logical operators in Q
(i.e., set union corresponds to disjunction, and set intersection corre-
sponds to conjunction):)(jjk

S∪∩ .

Example 6.1

Let the set of original documents be O = {O1, O2, O3}, where

O1 = Bayes’s principle: The principle according to which, when estimating
a parameter, one should initially assume that each possible value has
equal probability (uniform prior distribution).

O2 = Bayesian decision theory: A mathematical theory of decision-making
that presumes utility and probability functions, and according to which
the act to be chosen is the Bayes act, i.e., the one with highest subjective
expected utility.

O3 = Bayesian epistemology: A philosophical theory that holds that the
epistemic status of a proposition (i.e., how well proven or well estab-
lished it is) is best measured by a probability and that the proper way to
revise this probability is given by Bayesian conditionalization or similar
procedures. A Bayesian epistemologist would use probability to define
concepts such as epistemic status, support, or explanatory power and
explore the relationships among them.

 Let the set T of terms be:

T = {t1 = Bayes’s principle, t2 = probability, t3 = decision-making}.

Then, the set D of documents is as follows: D = {D1, D2, D3}, where

 D1 = {Bayes’s principle, probability},
D2 = {probability, decision-making},

 D3 = {probability}.

Let the query Q be:

Q = probability decision-making.

Step 1: The following sets S1 and S2 of documents Di are obtained:

 S1 = {Di| probability ∈ Di} = {D1, D2, D3},
S2 = {Di| decision-making ∈ Di} = {D2}.

Step 2: The following documents Di are retrieved in response to Q:

{Di|Di ∈ S1 ∩ S2} = {D1, D2, D3} ∩ {D2} = {D2}.

128 6 Boolean Retrieval

This means that the original document O2 (corresponding to D2) is the
answer to Q.

Obviously, if there is more than one document with the same representa-
tion, every such document is retrieved. Such documents are, in Boolean re-
trieval, indistinguishable (or, in other words, equivalent).

Example 6.2

Let us consider the following document: O4 = Bayes’s principle is used to
construct an equation that is of basic importance in probability theory.
With the set T of index terms of Example 6.1, O4 has the same representa-
tion, D4, as O1, i.e., D4 = D1 = {Bayes’s principle, probability}, and thus O1
and O4 are indistinguishable.

6.2 Technology of Boolean Retrieval

From a formal mathematical point of view, the Boolean retrieval method is
fairly simple. However, it is all the more important because every Web
search engine offers Boolean search capability, as does any database man-
agement system. The basic technology for Boolean retrieval is described in
Chapter 4 (inverted file structure). Step 1 usually means a binary search in
the inverted file structure, which results in the sets Sj. Another possibility
(e.g., when computer memory is large enough) is the use of a binary term-
document matrix:

Boolean Retrieval Using Binary Term-Document Matrix

1. Construct a term-document matrix TD = (wji)m×n, where wji = 1 if term tj
occurs in document Di, and wji = 0 otherwise.

2. Formulate a Boolean query Q =)(jjk
t∨∧ .

3. The sets Sj of documents that match Q are: Sj = {Di|tj ∈ Di} = {Di|wji =
1, i = 1,…,n}, i.e., as given by the jth row of matrix TD: rowTD(j).

4. The documents retrieved in response to Q are the result of logical

operations on the rows selected in Step 3, i.e.,))((jrowTDjk
∨∧ .

6.3 Lattice-Based Boolean Retrieval 129

6.3 Lattice-Based Boolean Retrieval

In principle, the lattice characterization of Boolean retrieval is simple. As
we have already seen, documents are represented as sets of terms. Thus,
they are elements of the document lattice LD = ℘(T) encountered in Moo-
ers’s model (Section 5.1).
 In database operations, retrieving data from a database is an important
topic in both theory (data model) and practice (running time). In relational
databases, which are based on entity-relationship models (Ullman 1980),
data are grouped into entity sets. Retrieval of data (in response to a query)
is performed by accessing instances (i.e., entity sets) of the entities in-
volved.

The notion of Boolean algebra (i.e., complemented and distributive lat-
tices) can be applied to design a retrieval method that is more efficient (in
terms of the number of accesses to the database and thus in terms of run-
ning time) than traditional methods (Yang and Chen 1996).

In what follows, the method is described together with an example.

Step 1. Let ENT denote an entity type as well the corresponding entity
set (which may seem strange, but in our context it will not lead to any con-
fusion). In other words, ENT denotes a table in which

• The columns correspond to attributes

A1,...,Ai,...,An

 (i.e., properties, terms),

• The rows correspond to entity instances (i.e., documents) that contain
specific values of the attributes (e.g., weights).

Table 6.1 shows an example for the entity set ENT. The attributes of ENT
are as follows: A1 = Name, A2 = Age, A3 = Job, A4 = Salary.

Table 6.1. Entity set ENT

Entity
instance

Name Age Job Salary

e1 B 68 Secretary 21000
e2 C 46 Professor 52000
e3 L 24 Professor 38000
e4 M 52 Secretary 35000
e5 W 43 Professor 42000
e6 D 25 Professor 36000
e7 O 21 Secretary 18000
e8 P 25 Secretary 30000

130 6 Boolean Retrieval

 Step 2. The attributes of ENT are partitioned. Pi = {Ai1,...,Aik} denotes a
partition of attribute Ai. For example, let the partition of attribute A3 = Job
be P3 = {Secretary, Professor}. (Note: The attribute “Professor” can be fur-
ther partitioned into Professor = {Assistant, Associate, Full}. Depending
on the needs of the application of interest, any attribute may be broken
down into further partitions.)
 The partition of Ai can be represented as a graph Gi in which Ai corre-
sponds to the root of the graph, while the other vertices and the edges re-
flect the dependence relations in the partition. This graph is a lattice and is
called descendance graph or d-graph. Figure 6.1 shows the d-graph of P3.

Fig. 6.1. The d-graph (partitioning lattice) of attribute “Job.”

 Let Di = {vi1,...,vij,...,vik} denote the vertices of d-graph Gi. It can be
seen that the d-graph is the Hasse diagram of the lattice (Di, ≤i), where vij
≤i vis if vij is a descendant of vis, ∀j,s. This lattice is referred to as the parti-
tioning lattice Li of Ai (Fig. 6.1).
 The attribute “Age” can be partitioned as follows. If Age ≤ 40, then
he/she is Young, and Notyoung otherwise. The attributes “Name” and
“Salary” form their own partitions. Figure 6.2 shows the four partition lat-
tices L1, L2, L3, L4 thus obtained.

0

Secretary Professor

Job

6.3 Lattice-Based Boolean Retrieval 131

Fig. 6.2. The partition lattices for the entity ENT.

 Step 3. Build the product lattice L = Xi Li. In our example,

 L = L1 × L2 × L3 × L4
 = {a1, a2, a3, a4, a5, a6, a7, a8, a9}
 = { (Name, Age, Job, Salary),
 (Name, Age, Secretary, Salary),
 (Name, Age, Professor, Salary),
 (Name, Notyoung, Job, Salary),
 (Name, Notyoung, Secretary, Salary),
 (Name, Notyoung, Professor, Salary),
 (Name, Young, Job, Salary),
 (Name, Young, Secretary, Salary),
 (Name, Young, Professor, Salary) }.

Figure 6.3 shows the Hasse diagram of the product lattice L for entity
ENT.

 Step 4. The entity set is divided into as many groups n1,...,nk as the
number of atoms in the product lattice L, based on the meaning of the at-
oms. For the entity set ENT, the number of atoms is k = 4, and the atoms
are a5, a6, a8, and a9. For the entity ENT, the groups are:

n1 = e1, e4 (i.e., the two entity instances in which Secretary is Notyoung),
n2 = e7, e8,
n3 = e2, e5,
n4 = e3, e6.

Let S = {n1,...,nk} denote the set of groups. Then, (℘(S), ⊆) is a Boolean
algebra.

Name

0

Secretar Professo

Job

0

Notyoung Young

Age

Salary

132 6 Boolean Retrieval

Fig. 6.3. Product lattice L for the entity ENT.

 Step 5. The Boolean lattice (℘(S), ⊆) can be used to answer queries
as follows. In practice, we do not have to construct the entire lattice. By
using the operations in a Boolean algebra, we only have to know what
the atoms are, and then we can use the usual set operations ∪, ∩, and \ to
retrieve data. This retrieval method is shown for the following query (as
an example):

 What are the names of the employees who are secretaries or who
 are young?

Using the notations:

A = {Name, Secretary}, B = {Young, Job},

the query as well as the result is:

A ∪ B = {n1, n2} ∪ {n2, n4} = {n1, n2, n4} =
{ e1, e4, e7, e8, e3, e6}.

6.4 Exercises and Problems

1. Given the following information need: “I am interested in a route
planner to plan a European journey by car.” Formulate Boolean que-
ries expressing this information need and experiment by supplying
them to several Web search engines.

 a5 a8 a6 a9

 a2 a4 a3 a7

a1

0

6.4 Exercises and Problems 133

2. Given the following information need: “I am interested in the opening
hours of chair museums in the United Kingdom, but I do not want

3. Draw and discuss a parallel between the Boolean retrieval method
and the functioning of the selection operator σE(R) encountered in re-
lation algebra (database theory), where E denotes a Boolean expres-
sion (i.e., the selection criteria), and R denotes a relation (i.e., a table
from which the rows satisfying E are selected).

4. Use an appropriate software tool (e.g., database management system,
programming language) to implement a small retrieval system using
the Boolean retrieval method for a small text collection of your
choice.

5. Let D denote a set of car parts (e.g., pedal, speedometer, seat, weight
sensor, etc.) and T denote a set of symbols (or names) of electronic
components (e.g., LED, chip of some kind, etc.) used in car parts. T
indexes D. Develop a retrieval system using the Boolean retrieval
method to find components for car parts.

6. Let D denote a set of medical images, namely CT (computer
tomography) images of the human brain as follows: D =
{d1,…,di,…,dn}, where di denotes a package of image slices, i =
1,…,n. Each di is associated with a medical report (which is a piece of
text) written by a neurologist when he/she examines the CT images of
a patient. Develop a retrieval system for the use of physicians using
the Boolean retrieval method to find the images of a specific patient
having a specific diagnosis.

any hits on cars having type Seat or on chairs of organizations.”
Formulate Boolean queries expressing this information need and
perform searching by supplying them to several Web search engines.

7 Lattices of Subspaces and Projectors

Nature does not demand a numeric description of us.
(Imre Fényes)

This chapter presents the notions and results (metric space, complete
space, linear space, subspace, linear operator, Banach space, Hilbert space,
Euclidean space, projection theorem, projector, lattice of subspaces) that
are applied in Chapters 8 and 9 (on vector space retrieval and algebra-
based retrieval methods).
 Every notion is illustrated with detailed intuitive or mathematical exam-
ples to promote better understanding of their meaning.

The Gram-Schmidt procedure for defining an orthonormal basis of a
subspace of a linear space is described, the lattice of closed subspaces of a
Hilbert space is defined, and the way in which this lattice expresses the
underlying geometry of the space is shown.

The chapter ends with exercises and problems in IR.

136 7 Lattices of Subspaces and Projectors

7.1 Metric Space

Let X denote a set. A function

δ : X × X → +, (7.1)

where + denotes the set of positive real numbers, and X × X denotes the
Cartesian product of set X with itself, is called a pseudometric if the fol-
lowing properties hold:

1. x = y δ (x, y) = 0.
2. δ (x, y) = δ (y, x), ∀x, y ∈ X. (symmetry)
3. δ (x, z) ≤ δ (x, y) + δ (y, z), ∀x, y, z ∈ X (triangle inequality).

If, in addition to properties (1)–(3), the function δ obeys also the property:

 4. δ (x, y) = 0 x = y,

then δ is called a metric. Set X with a (pseudo-)metric δ is called a
(pseudo-)metric space, expressed as (X, δ).
 The notion of metric space is a very important one (used in several sci-
entific disciplines), and it may not always be an easy or trivial one. The
concept of metric space embodies two major characteristics:

• A “distance” (“closeness”) can be measured between any two elements
of the space.

• The “distance” obeys (1)–(4) above, which are special rules (e.g., sym-
metry means that the same “distance” is measured from an element x to
an element y as from y to x).

Example 7.1

 (a) From an intuitive point of view, the concept of metric can be well il-
lustrated by the notion of the usual physical distance in the three-
dimensional physical space in which we live our everyday lives. When,
e.g., the plan of the base of a future house is drawn on the ground, the
ground is conceived as a two-dimensional space (i.e., a plane) in which we
use the well-known Euclidean distance as a metric to measure physical dis-
tances and to make the drawing (plan) of the future base. In this case, the
ground and the “meter” together constitute a metric space (Fig. 7.1). Using
the meter, we can measure the physical distance between any two points
on the ground. Indeed, in a metric space, the distance between any of its
elements is defined (and, hence, can be measured).

7.2 Complete Metric Space 137

Fig. 7.1. Plane and meter: an example of metric space.

 (b) To better illustrate another important characteristic of the notion of
metric space as a structure, let us consider the following set:

X = {Grandparents, Mother, Father, Children, Hobbies, Friends, Memo-
ries, Love, Preferences, House, Garden, Professions, Car, Money}.

Can X be organized as a metric space? This example is very relevant to IR.
The elements of X may be conceived as being documents. A metric should
be a measure of how “close” (or “distant”) they are to each other. Function
δ defined as δ (a, b) = 1 if a ≠ b and δ (a, b) = 0 if a = b is a metric. Thus,
the structure (X, δ) is, from a mathematical point of view, a metric space.
However, the space thus obtained would hardly be appropriate for retrieval
purposes: more suitable measures have to be defined (as they indeed have
been defined over time).

7.2 Complete Metric Space

Let (X, δ) denote a metric space. A sequence x1,…,xn,…∈ X is said to be
convergent if it has a limit, denoted by, say, L; i.e.,

∀ε ∈ ∃nε ∈ such that δ(xn, L) < ε, ∀n > nε, (7.2)

where denotes the set of natural numbers and the set of real numbers.
In words, condition (7.2) means that after some index nε all the remaining
terms of the sequence “rush” to the value L (i.e., the limit), which they
“approach” as closely as desired.

SPACE: plane (ground)

Plan of house

METRIC: meter

138 7 Lattices of Subspaces and Projectors

 A metric space (X, δ) is said to be complete (relative to metric δ) if the
Cauchy principle of convergence holds in space (X, δ), i.e., sequence x1,…,
xn,…∈ X is convergent if and only if

∀ε ∈ ∃nε ∈ such that δ(xm, xn) < ε, ∀m, n > nε. (7.3)

 The completeness of a metric space is not a trivial or intuitive property.
It means that convergent sequences are exactly those that satisfy [apart
from condition (7.2)] an additional property [namely the Cauchy principle
(7.3)]. Example 7.2 should help to clarify the property of completeness of
a metric space.

Example 7.2

Let us consider the real line with the usual Euclidean distance as a metric
on it as a metric space. Then, the convergence of any sequence of numbers
is equivalent to the Cauchy principle. For example, let us imagine that we
walk, with decreasing steps, straight toward a cricket hole starting from,
say, 2 meters away. We make each step at half the distance remaining to
the hole. Then, for a stick of any length (i.e., ε), after some number of
steps (i.e., nε), the distance between any two further successive steps (i.e.,
m and n) will be shorter than the stick (Fig. 7.2).

cricket hole ←⎯⎯ walk

Fig. 7.2. Illustration of the Cauchy principle of convergence.

 The condition formulated in the Cauchy principle of convergence is far
from being intuitive. As an example, try to imagine a similar walk, but not
in a plane, as in the previous walk to a cricket hole, but rather on a
“creased” surface (Fig. 7.3).

Fig. 7.3. “Creased” surface.

7.3 Linear Space 139

xn =
n

n
+ 11

does satisfy the Cauchy principle, but it is not convergent in (, δ); its
limit is an irrational number, namely e (and e ∉).

7.3 Linear Space

A linear space (or vector space) over a field F (for our purposes it is suffi-
cient to assume that F is equal to the set of real numbers or to the set
of complex numbers, both endowed with the usual operations of addition
(i.e., +) and multiplication (i.e., ×) of real or complex numbers, respec-
tively) is the structure (L, ⊕, ⊗, F), where ⊕ and ⊗ denote two binary op-
erations:

⊕: L × L → L and ⊗: F × L → L, (7.4)

if the following properties hold:

• a ⊕ b = b ⊕ a, ∀a, b ∈ L (commutativity).
• ∃e ∈ L such that a ⊕ e = a, ∀a ∈ L (e is referred to as the null vector).
• ∀a ∈ L ∃a’∈ L such that a ⊕ a’ = e (a′ is called the inverse of a);
• a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c, ∀a, b, c ∈ L (associativity).

Further, for ∀r, p ∈ F, ∀a, b ∈ L we have:

• (r + p) ⊗ a = (r ⊗ a) ⊕ (p ⊗ a).
• r ⊗ (a ⊕ b) = (r ⊗ a) ⊕ (r ⊗ b).
• (r × p) ⊗ a = r ⊗ (p ⊗ a).
• 1 ⊗ a = a.

 A linear space is denoted in short by L. The elements of a linear space L
are traditionally called vectors and are usually denoted by bold letters, e.g.,
v, while the elements of F are called scalars.

 The notion of a complete metric space is not trivial either. A convergent
sequence always satisfies the Cauchy principle of convergence, but the
reverse is not always true: not every sequence that satisfies the Cauchy
principle is convergent (i.e., has a limit) in the space. For example, in
the metric space (, δ), where denotes the set of rational numbers and
δ = |a − b|, ∀a, b ∈ , the sequence

140 7 Lattices of Subspaces and Projectors

Example 7.3

 (a) Let us assume that we are standing on side A of a river and that we
are pulling a boat from side B toward us (Fig. 7.4). Pulling the boat means
that a force P is acting on the boat. The water is also acting on the boat by
some force R. Then, actually, a resultant force P + R is acting on the boat.
The sum P + R is also a vector, i.e., a quantity of the same type as P and
R. Forces and operations with them form a linear space.

Fig. 7.4. Space of forces.

 (b) As another example, let us consider a room and the objects within it.
The position of any object in the room can be given relative to where we
stand by specifying its distance (say, in meters) to our left or right, above
or below us, in front of or behind us (Fig. 7.5). The position of objects in
the room is a quantity with magnitude and direction, i.e., a vector.

 up
 behind

 right left

 front
 down

Fig. 7.5. Space of position vectors.

boat

River Side B

River Side A

P

R

Water flows

P+R

7.4 Subspace of Linear Space 141

 The expression (r1 ⊗ v1) ⊕…⊕ (rm ⊗ vm) is called a linear combination
of vectors v1,…,vm (r1,…,rm ∈ F). When the linear combination is equal to
e if and only if r1 =…= rm = 0, then vectors v1,…,vm are said to be linearly
independent, and linearly dependent otherwise. A set of linearly independ-
ent vectors forms an algebraic basis (basis for short) of L if any vector of
the space can be written as a linear combination of them. Every linear
space has at least one basis. Each basis contains the same number of vec-
tors, and this number is referred to as the dimension of the space.
 If b1,…,bn ∈ Ln denote basis vectors of an n-dimensional linear space Ln,
then every vector v ∈ Ln can be written as a linear combination of basis
vectors:

v = (p1⊗b1) ⊕…⊕ (pn⊗bn), (7.5)

where the scalars p1,…,pn ∈ F are called the coordinates of vector v; ex-
pressed as v = (p1,…,pn) = [p1,…,pn]T, where T denotes the transpose, i.e.,

[p1,…,pn]T =

np

p
...

1

.

7.4 Subspace of Linear Space

A subset A ⊆ L, A ≠ ∅, of space L is a subspace of L if A is itself a linear
space. Equivalently:

• a ⊕ b ∈ A, ∀a, b ∈ A.
• r ⊗ a ∈ A, ∀r ∈ F, ∀a ∈ A.

Example 7.4

The ground (see Example 7.1) may be viewed as a linear space L of posi-
tion vectors. The line A in the plane is a subspace of L.

Fig. 7.6. Line A is a subspace of the plane as a linear space L of position vectors.

Plane: linear space L

Line: subspace A

142 7 Lattices of Subspaces and Projectors

 A subset A of L is closed if and only if the limit of any convergent se-
quence x1, x2,…∈ A belongs to A. A subset A of the linear space (L,) is
convex if

a, b ∈ A r ⊗ a ⊕ (1 − r) ⊗ b ∈ A, ∀r ∈ [0; 1].

It is easy to see that every subspace of a linear space is convex.
 The direct sum + of two subspaces A1 and A2 of linear space L is defined
as (Fig. 7.7):

A1 + A2 = {x ⊕ y | x ∈ A1, y ∈ A2}.

Fig. 7.7. Direct sum of lines A1 and A2 as subspaces of the plane.

7.5 Linear Operator

Let (L1, ⊕1, ⊗1, F) and (L2, ⊕2, ⊗2, F) denote two linear spaces. A function
U: L1 → L2 with the properties

U(v ⊕1 w) = U(v) ⊕2 U(w),

U(a ⊗1 v) = a ⊗2 U(v),

(7.6)

is called a linear operator. Let b1,…,bn denote basis vectors of space (L1,
⊕1, ⊗1, F), and let v = (p1 ⊗1 b1) ⊕1 … ⊕1 (pn ⊗1 bn) denote an arbitrary
vector of L1. Then, the linear operator U: L1 → L2 is uniquely determined
by U(v) = (p1 ⊗2 U(b1)) ⊕2…⊕2 ((pn ⊗2 U(bn)).
 Let Λ(L1, L2) denote the set of all linear operators U from space (L1, ⊕1,
⊗1, F) into space (L2, ⊕2, ⊗2, F). Then, the structure (Λ, +, ×, F) is the lin-
ear space of linear operators, where

A2

A1 + A2: plane as space L

A1

7.6 Banach Space 143

(U1 + U2)(v) = U1(v) ⊕2 U2(v),

(a × U)(v) = a ⊗2 U(v).
(7.7)

 The name linear operator may be misleading, as it may suggest that
some trivial operation (e.g., the drawing of a straight line) has been gener-
alized to a needlessly complicated abstract formulation. That this is by far
not the case is illustrated in Example 7.5.

Example 7.5

Let us consider the well-known Euclidean plane. Let P denote a point in
this plane, and let its position vector be r = (b, a). Let us consider now an
operation U that “mirrors” every vector by the horizontal axis (Fig. 7.8).
This means that U is defined as follows:

U(b, a) = (b, −a). (7.8)

Operator U is given by the following matrix:

−
=

10
01

U ,
−

=×
−

=
a

b
a
b

abU
10

01
),(. (7.9)

Operator U thus defined is a linear operator on the plane. It mirrors any
point P by the horizontal axis into the point P′.

 a P
 r
 b

 -a P’

Fig. 7.8. Mirroring of vectors in a plane by the
horizontal axis: linear operator.

7.6 Banach Space

Let L be a linear space. A function ν : L → + is called a pseudonorm if
the following properties hold:

• If v denotes the null vector of L, then ν(v) = 0.
• ν(r⊗v) = |r| × ν(v), ∀r ∈ F, ∀v ∈ L.
• ν(v⊕w) ≤ ν (v) + ν (w), ∀v, w ∈ L.

144 7 Lattices of Subspaces and Projectors

If, in addition, function ν obeys also the following property:

• If ν(v) = 0, then v is the null vector of L,

then function ν is called a norm. Usually, ν(v) is denoted by ||v||. A linear
space L with a norm is called a normed (linear) space.
 The notion of norm is not trivial. It endows the space with a special
character. Example 7.6 illustrates this.

Example 7.6

• The absolute value |r| of any real number r ∈ is a norm in the set of
real numbers .

• It may happen that the same space can be endowed with more than one
norm. For example, the space C[a, b] of real and continuous functions
defined on [a, b] can be organized as a normed space with the norm
ν (f (x)) =

[]
|)(|max

,
xf

bax ∈
, and as another normed space with the norm

ν (f(x)) =
b

a

dxxf 2|)(| .

 A normed linear space (L, ||.||) defines a metric space (L,) with the
metric δ (v, w) = ||v ⊕ (−1) ⊗ w||. The expression ||v ⊕ (−1) ⊗ w|| is usu-
ally written as ||v − w||, and the metric thus defined is called a metric in-
duced by the norm. If a normed linear space (L, ||.||) is complete relative to
the metric induced by the norm ||.||, space L is called a Banach space.
 As can be seen, the notion of Banach space encompasses two highly
nontrivial properties:

• That of being normed.
• That of being complete.

In a Banach space, one can measure distances as defined by the norm, and
all convergent sequences are exactly those that satisfy the Cauchy princi-
ple of convergence. The fact that not every normed space is a Banach
space, i.e., that this is not trivial, is illustrated in Example 7.7.

Example 7.7

• The set of real numbers is a Banach space relative to the metric in-
duced by the norm given by the absolute value.

7.7 Hilbert Space 145

• The space C[a, b] of real and continuous functions defined on [a, b] is a
Banach space with the norm ν(f(x)) =

[]
|)(|max

,
xf

bax∈
.

• The space C[a, b] of real and continuous functions defined on [a, b] is
not a Banach space with the norm

ν(f(x)) =
b

a

dxxf 2|)(| .

7.7 Hilbert Space

Let (L, ⊕, ⊗, F) be a linear space. A mapping π: L × L → F satisfying the
properties is called a scalar (or inner or dot) product:

• π(v ⊕ w, u) = π(v, u) + π(w, u), ∀v, w, u ∈ L.

• π(r ⊗ v, w) = r × π(v, w), ∀r ∈ F, ∀v, w ∈ L.

• π(v, w) = (π(w, v))*, ∀v, w ∈ L, where (π(w, v))* denotes conjugate if
 L = .
• π(v, v) ≥ 0, ∀v ∈ L.
• π(v, v) = 0 if and only if v = 0 (0 is the null vector of space L).

Instead of π(x,y) the following shorter notations may also be used: (x, y),
x ⋅ y, <x | y>, <x, y>, xy. We use the notation: <x, y>.
 A Banach space (L, ⊕, ⊗,) in which the norm is defined using the
scalar product ||v|| = <v, v>1/2 is called an abstract Hilbert space (or Hil-
bert space for short). As can be seen, the notion of Hilbert space is special
in that the norm is defined using a very special function: the scalar prod-
uct. Every Hilbert space is a Banach space, but the reverse is not necessar-
ily true (the scalar product is not an ‘ingredient’ of a Banach space).
 Let U ∈ Λ(L, L) be a linear operator. Then, U is self-adjoint if

<U(v), w> = <v, U(w)>, ∀v, w ∈ L.

Example 7.8

• Let r = (r1, r2) and p = (p1, p2) denote two position vectors in a plane.
Then, π (r, p) = r1 p1 + r2 p2 is a scalar product.

146 7 Lattices of Subspaces and Projectors

• Originally, the Hilbert space was the set of sequences x1,…,xi,…∈ for

which the series
∞

=1

2

i
ix was convergent, endowed with the metric

∞

=

−=
1

2)(),(
i

ii yxyxδ .

7.8 Euclidean Space

The Euclidean space, which we denote by En (Figure 7.9 shows the three-
dimensional space E3), is a special Hilbert space (L, ⊕, ⊗, F) defined as:

• The set L is equal to the set of n-tuples (v1,…,vn) ∈ n of real numbers,
i.e., L = n.

• F = .
• The operation ⊕ is defined as follows: ⊕ = +; v = (v1,…,vn), w =

(w1,…,wn), v + w = (v1 + w1,…,vn + wn).

• The operation ⊗ is defined as ⊗ = ×; r × v = (r × v1,…, r × vn).
• The norm is defined as the Euclidean length of a vector, i.e.,

||v||=
=

n

i iv
1

2 .

• The scalar product is defined as <v, w> = v1 × w1 +…+ vn × wn = ||v|| ⋅
||w|| ⋅ cosϕ (where ϕ is a measure of the angle between vectors v and w).

 It follows that the Euclidean distance between two vectors v =
[v1,…,vn]T and w = [w1,…, wn]T is defined as

||v + (−1)×w||=
=

−n

i ii wv
1

2)(, (7.10)

and a measure of the angle ϕ between vectors v, w ≠ 0 ∈ n is a real num-
ber ϕ such that

cosϕ =
|||||||| wv

wv,
×

. (7.11)

7.9 Projection Theorem 147

Two vectors v and w are orthogonal to each other if cosϕ = 0. Any n-
dimensional Euclidean space En has an orthonormal (i.e., orthogonal and
unit lengths) basis (there may also be other bases that need not be orthogo-
nal or have unit lengths). A common orthonormal basis is

e1 = [1,0,0,…,0]T, e2 = [0,1,0,…,0]T, …, en = [0,0,0,…,1]T,

where <ei, ej> = δij (δij is the Kronecker delta symbol, i.e., δij = 1 if i = j,
and δij = 0 if i ≠ j).

Fig. 7.9. Visualization of the three-dimensional

orthonormal Euclidean space E3. (This space is used
to model, e.g., the usual physical space we live in)

7.9 Projection Theorem

Two elements u and v of the Hilbert space L (u, v ∈ L) are said to be or-
thogonal if <u, v> = 0, expressed as u ⊥ v. Two subsets A and B of L are
said to be orthogonal, written as A ⊥ B, if

A ⊥ B ⇔ (u ⊥ v, ∀u ∈ A, ∀v ∈ B). (7.12)

 When subset A consists of one element, A = {u}, then the notations A ⊥
B and u ⊥ B are considered to be equivalent to each other. For a subset A ⊂
L of the Hilbert space L, the set A⊥ = {u ∈ L ⏐ u ⊥ A} is referred to as the
orthogonal complement of A.
 The following result, known as the projection theorem, is a well-known
and very important result in functional analysis and quantum mechanics,
and is no less important in IR (as will be seen in Chapter 8):

e2

e3

e1

148 7 Lattices of Subspaces and Projectors

Theorem 7.1. Let L be a Hilbert space, and A a closed subspace of L, A ⊂
L. Then, any element u ∈ L can be represented as

u = v ⊕ w

in a unique way, v ∈ A, w ∈ A⊥.

 Proof. As the case when L = En (i.e., the n-dimensional Euclidean space)
is important in IR, it is the one for which we give the proof.
 Let w1,…,wk be a basis of subspace A. Let M denote the matrix formed
by these basis vectors, i.e.,

M = [w1 … wk].

The basis vectors w1,…,wk span the subspace A. It is known from the the-
ory of matrices that:

• Subspace A is equal to the column space col(M) of matrix M, i.e., A =
col(M).

• The orthogonal complement A⊥ of subspace A is A⊥ = col(M)⊥ =
null(MT), where MT denotes the transpose of matrix M, while null(MT)
denotes its null space, i.e., the space of vectors a ∈ En for which MTa =
0.

Let u ∈ En be a vector of the n-dimensional Euclidean space. Then, the si-
multaneous system of linear equations

(MTM)x = MTu

has a unique solution because⎯by assumption⎯the rank of the k × k ma-
trix MTM is equal to k, i.e., rank(MTM) = k. From (MTM)x = MTu we obtain

MT(u − Mx) = 0,

which means that vector w = u − Mx belongs to the orthogonal comple-
ment of A, i.e., w = u − Mx ∈ A⊥. Vector Mx belongs to subspace A, i.e.,
Mx ∈ A, and can be denoted by v: Mx = v. Thus, we have that

w = u − Mx = u − v, u = v + w.

Example 7.9

For example, any vector u ∈ E3 in the three-dimensional space can be
uniquely written as

u = v + w, where v ∈ E2 and w ∈ E2
⊥.

7.10 Projector 149

 If u ∈ E2, then u = v + w = u + 0. If u ∈ E2

⊥, then u = v + w = 0 + u.
If u ∉ E2 and u ∉ E2

⊥, then vector u makes an angle α with the plane E2.
Let O denote the starting point of vector u. Further, let Q denote the inter-
section point between the plane and the perpendicular from the endpoint P
of vector u onto the plane. Then, the directed line segments OQ and

QP are just the vectors v and w:

v = OQ , w = QP .

7.10 Projector

Vector v in Theorem 7.1 is called the projection of vector u onto subspace
A; notation: v = [A]u. An operation P defined as PA(x) = [A]x, i.e., giving
the projection of vector x of a Hilbert space onto subspace A, is called a
projector (Example 7.10). Projectors are self-adjoint linear operators with
the property P2 = P.

Example 7.10

The following operator P projects any vector (a, b) of the plane onto the
horizontal axis, the result being the vector (a, 0):

E2
⊥

E2

u
P

Q
O

E2
⊥

E2

u

v

w

150 7 Lattices of Subspaces and Projectors

=
00
01

P , =×=
000

01
),(

a
b
a

baP .

From the proof of Theorem 7.1, we can see that projector PA(x) is given
by:

PA(x) = M(MTM)−1MTx, (7.13)

where the matrix

M(MTM)−1MT (7.14)

is the matrix of projector PA(x).

Example 7.11

Plane S is defined by the equation x − 4y + 2z = 0 in E3. The matrix of pro-
jector PS(x), x ∈ E3, onto plane S can be obtained as follows. First, a basis
for S should be given. Let y = 1 and z = 0; then x = 4, and for y = 0 and z =
1, we obtain x = −2. Thus, matrix M is

−
=

1
0
2

0
1
4

M .

Matrix M of projector PS(x) is

M = M(MTM)−1MT =
−

−

81.0381.0095.0
381.0238.019.0
095.019.0952.0

.

For example, the projection of vector x = (1 3 7) onto plane S is the vector
Mx = (0.857 3.571 6.714).

 Apart from its use in IR and quantum mechanics, the projection theo-
rem 7.1 has many applications in other areas as well. As a simple example,
let us consider the simultaneous system of linear equations Ax = b (in ma-
trix form). If we can solve it, then an exact solution is obtained. But when
we cannot solve it exactly, then we seek a vector x that minimizes ||b −
Ax||. Since col(A) = {w | ∃y w = Ay}, the minimizing vector x will be its
projection onto col(A).

7.11 Basis of Subspace 151

7.11 Basis of Subspace

We have seen that in order to find a projector, a basis of the subspace in
question should be given. The problem of finding such a basis can be
solved as follows. Let S = {v1,…,vs} ⊂ En be (not necessarily linearly in-
dependent) vectors in the n-dimensional Euclidean space. The set Sp(S) =
{w | α1v1 +…+ αnvs } of all linear combinations of the vectors from S is a
subspace of En and is referred to as the subspace spanned by S.

An orthonormal basis for the subspace Sp(S) can be obtained using the
Gram-Schmidt procedure.

Gram-Schmidt Procedure

Let A denote the matrix of the vectors of S, A = [v1 … vs], i.e.,

=

ns

s

n a

a

a

a
A .

...

...

...
.

1

1

11

.

 The first basis vector, e1, is given by

e1 =
|||| 1

1

v
v

.

 The second basis vector, e2, is given by

e2 =
|||| 2

2

z
z

,

where z2 = v2 − λ21e1, with λ21 such that <z2, e1> = 0, λ21 = <v2, e1>.
If the basis vectors e1,…,em have already been obtained, the next basis
vector, em+1, is given by

em+1 =
|||| 1

1

+

+

m

m

z
z

,

 where

−=
=

+++

m

k
kkmmm

1
,111 evz λ ,

with the coefficients λm+1,k (k = 1,…,m) so chosen as to have <zm+1, ej> =
0, j = 1,…,m, i.e., λm+1,k = <vm+1, ek>.

152 7 Lattices of Subspaces and Projectors

7.12 Lattice of Subspaces

The structure (ℜ(L), ∧, ∨, C) is an atomic, complete, orthomodular lattice
when:

• ℜ(L) is the set of all closed subspaces of the Hilbert space L.
• A ∧ B = A ∩ B for every subspace A, B of L. The intersection is also a

subspace of L; it is the largest subspace contained in both A and B.
• A ∨ B = A + B; A ∨ B is the smallest subspace containing both A and B.
• C = ⊥ (orthogonal complement).

 (A proof can be given using the axioms defining a lattice, the definitions
of A ∩ B and A + B, and the orthomodular law.) Lattice ℜ(L) is modular if
and only if Hilbert space L is finite-dimensional (e.g., L = En). The order-
ing relation ≤ is defined by the concept of subspace.
 As there is a one-to-one correspondence between subspaces and projec-
tors (Theorem 7.1), one may say that projectors form a poset, just as sub-
spaces do. We say that P1 ≤ P2 if for the corresponding subspaces we have
M1 ⊆ M2. Further, it can be easily seen that P1 ≤ P2 if P1P2 = P1.
 The main difference between lattice ℜ(L) and a Boolean algebra⎯e.g.,
the powerset (L, ⊆) a as Boolean algebra or the Boolean algebra of logical
propositions ({T, F}, , V, ¬)⎯is related to the distributive law. This is an
important difference between the two lattices in that it reflects a primary
difference in their structures (and thus induced properties). The difference
can be well illustrated using the following example. Let L denote the Hil-
bert space E2, and let M and N be two one-dimensional subspaces of L
(Fig. 7.10).

Fig. 7.10. Three one-dimensional subspaces of the two-dimensional

Hilbert space E2 that do not satisfy the distributive law.

M

N

M⊥

7.13 Exercises and Problems 153

We have:

N (M N⊥) = N L = N, (7.15)

but

N M = N N⊥ = {0}. (7.16)

 In any powerset lattice (℘(X), ⊆), which is a Boolean algebra, the dis-
tributive law makes it possible to write the following relationship for any
sets A and B of X:

A= A ∩ X = A ∩ (B ∪ CXB) = (A ∩ B) ∪ (A ∩ CXB). (7.17)

In a subspace lattice ℜ(L), the operation corresponding to set complement
C is orthocomplementation ⊥. Based on Eq. (7.17), we may say that two
subspaces are compatible if

(M N) (M N⊥) = M. (7.18)

 The orthomodularity condition can be interpreted as an underlying
property of the geometry of space, namely:

N, M ∈ ℜ(L), M ≤ N

N = M ∨ (NC ∧ M) =

M + (N⊥ ∩ M) =

M + (N − M),

(7.19)

i.e., N is the direct sum of M and N − M.
 As a consequence of Theorem 7.1, every subspace Ai of a Hilbert space
L can be uniquely assigned a projector Pi. Thus, one may say that projec-
tors also form a lattice.

7.13 Exercises and Problems

1. Show that iii
yx −

≤≤ 21
max is a metric over E2 (i.e., in the usual plane).

2. Let X = D denote a set of documents and T a set of terms. Can you
define a metric between the elements of D?

154 7 Lattices of Subspaces and Projectors

3. Let X = D denote a set of documents and T a set of terms. Every
document d is a set of terms, i.e., d ∈℘(T). Is the function

δ: D × D → , δ(di, dj) = |di ∩ dj|

a metric? (Note: |di ∩ dj| denotes the number of terms di and dj have
in common.)

4. Let X = D denote a set of documents and T a set of terms. Every
document d is a set of terms, i.e., d ∈℘(T). Further, let wij denote the
weight of term ti in document dj (i = 1,…,n, j = 1,…,m). Do the
documents of D [represented as dj = (w1j,...,wnj)] form a linear space
(D, +, ×,)?

5. Is cosϕ a metric on the space En?

6. Define projectors in E3.

7. Show that lattice ℜ(En) of subspaces of En is modular.

8. Let D = {d1,...,dm} denote a collection of documents and T = {t1,...,tn}
a set of terms. Let W = (wij)n×m be a term-document weights matrix (n
> m).

o Write down the subspace Sp(W).
o Determine a basis for subspace Sp(W).
o Calculate the matrix of projector PSp(W)(x).
o Given a query vector q, compute the projection of the

query onto the subspace of documents, i.e., PSp(W)(q).

 9. Let D = {d1,...,dm} denote a collection of documents and T = {t1,...,tn}

 a set of terms. Let W = (wij)n×m be a term-document weights matrix,
and q a query vector. Matrix W may be conceived as the matrix of an
operator O between the linear space En of documents and a linear
space Em of similarities (i.e., s = (s1 ... sj ... sm), where sj is the degree
of similarity between query q and document dj): O: En → Em. Show
that the operator O is a linear operator. Is it a projector? Why?

7.14 Bibliography

Folland, G. B.: Real Analysis: Modern Techniques and Their Applications (Wiley,
New York, 1984)

Halmos, P. R.: Introduction to Hilbert Spaces (Chelsea, New York, 1957)

7.14 Bibliography 155

Jauch, J. M.: Foundations of Quantum Mechanics (Addison-Wesley, Reading,
MA, 1968)

Patterson, E. M., and Rutherford, D. E.: Elementary Abstract Algebra (Oliver and
Boyd, Edinburgh/London, 1965)

Riesz, F., and Sz.-Nagy, B.: Functional Analysis (F. Ungar, New York, 1955)
Rudin, W.: Real and Complex Analysis (McGraw Hill, New York, 1966)

8 Vector Space Retrieval

It is not the vectors which matter, but the lattice of subspaces.
(John von Neumann)

This chapter begins with the original as well as a more formal description
of vector space retrieval (VSR). An example is also given to the reader
help exactly understand what the method means and how it operates.

Then, the widely used similarity measures are presented in both a com-
pact and parameterized form (having in mind a computer programmer who
prefers writing a compact code for all cases) and in their usual forms.

This is followed by a description of the use of the notion of a projector
in Hilbert space for the calculation of meaning and for the expression of
compatibility of relevance assessments.

The second part of the chapter is concerned with the application of lat-
tices in VSR. It is shown that retrieving documents means projection. After
introducing the concept of equivalent queries, we prove that nonequivalent
queries form a nondistributive lattice (called a query lattice). We also show
that VSR may be viewed as a nonsubmodular lattice-lattice mapping from
the query lattice to the Boolean algebra of documents.

A parallel is drawn between the lattice-based view of quantum mechan-
ics and the lattice-based view of IR introduced in this chapter, and that is
discussed.

Thus, this chapter may help provide a deeper insight into the very
mechanism or logic of VSR

The chapter ends with exercises and problems that are designed to en-
hance understanding of the application of the vector space method in
practice.

158 8 Vector Space Retrieval

8.1 Introduction

Given an entity described by a piece of text (traditionally called a docu-
ment), if the words are ranked in decreasing order with respect to their
number of occurrences (also called frequencies), then the product of the
rank of any word and its number of occurrences is approximately constant
(Zipf 1949). If it is assumed, naturally enough, that the most obvious place
where appropriate content identifiers might be found is the document it-
self, then the number of occurrences of a term can give a meaningful indi-
cation of its content (Luhn 1966). Given m documents and n terms, each
document can be assigned a sequence (of length n) of weights that repre-
sent the degrees to which terms pertain to (characterize) that document. If
all of these sequences are put together, an n × m matrix, called a term-
document matrix, of weights is obtained, where the columns correspond to
documents and the rows to terms (see also Chapter 4).
 Let us consider a⎯textual⎯query expressing an information need to
which an answer is to be found by searching the documents. Salton (1966)
proposed that both documents and queries should use the same conceptual
space, and some years afterward Salton et al. (1975a) combined this idea
with the term-document matrix. More than a decade later, Salton and
Buckley (1988) reused this framework and gave a mathematical descrip-
tion that has since become known as the vector space model (VSM) or
VSR:

• Both document and query weights are conceived as being vectors in the
linear space (of terms).

• The degree of similarity between documents and queries is based on the
scalar product of the space.

• If the scalar product is zero, then no documents are retrieved.
• Only those documents are retrieved for which the scalar product is dif-

ferent from zero.

 Vector space retrieval has proved useful in many practical applications
over time. Its retrieval effectiveness was tested under laboratory conditions
almost at its inception by Salton et al. (1975a) using three test collections
(CRAN, MED, TIME). They found that the mean average precision was
0.48 for CRAN, 0.57 for MED, and 0.66 for TIME. The experimental re-
sults have been confirmed time and again ever since. For example, Wong
et al. (1985) found that the mean average precision was 0.25 for ADI and
0.35 for CRAN. We repeated the measurements and found the mean aver-
age precision to be: 0.33 for ADI, 0.44 for MED, 0.52 for TIME, and 0.18

8.2 Lattices in Vector Space Retrieval 159

for CRAN. (Note: Newer retrieval methods developed in the meantime
gave better results on these test collections.)
 There seem to be just two works in which the notion of lattice is applied
in the VSR method, and both relate to the lattice of subspaces of a Hilbert
space.
 Widdows and Peters (2003) apply quantum logic operations to retrieval.
The operations (conjunction, disjunction, negation) defining the lattice of
subspaces of a Hilbert space are used to define nonclassical logical opera-
tions NOT, OR, and AND on word vectors. These are then used to find
senses of words and to resolve the word sense disambiguation problem.
 Van Rijsbergen (2004), applying von Neumann’s ideas in quantum
logic, shows how one can treat important retrieval methods (coordination
level matching, relevance feedback, dynamic clustering, ostensive re-
trieval) within the framework of Hilbert spaces by interpreting the inner
product as probability. He uses the lattice of subspaces of a Hilbert space
to give an algebraic form to logical conditionals utilized in retrieval, argu-
ing that disjunction does not commute (“observing relevance followed by
topicality is not the same as observing topicality followed by relevance”),
and so is not classical.
 In this chapter, we deal with VSR and present a lattice theoretical ap-
proach that differs from the above-mentioned applications of lattices to
VSR. Namely, we show that VSR may be conceived as a nonsubmodular
lattice-lattice mapping between a nondistributive lattice and a Boolean al-
gebra. This view of the subject should help the reader to gain a deeper in-
sight into its formal mechanism and its underlying abstract structures.

8.2 Lattices in Vector Space Retrieval

8.2.1 Vector Space Retrieval

Salton and Buckley (1988) gave the following mathematical description,
which is now known as the vector space model (VSM) of information re-
trieval:

In the late 1950’s, Luhn first suggested that automatic text
retrieval systems could be designed based on a comparison of
content identifiers attached both to the stored texts and to the
users’ queries. The documents would be represented by term
vectors of the form D = (ti, tj,…,tp), where each tk identifies a
content term assigned to some sample document D.
Analogously, a typical query vector might be formulated as

160 8 Vector Space Retrieval

Q = (qa, qb,…,qr). A more formal representation of the term
vectors is obtained by including in each term vector all
possible content terms allowed in the system and adding term
weight assignments to provide distinctions among terms.
Thus, if wdk (or wqk) represents the weight of term tk in
document D (or query Q), and t terms in all are available for
content representation, the term vectors for document and
query can be written as D = (t0,wd0; t1,wd1;…; tt,wdt) and Q =
(q0,wq0; q1,wq1;…; qt,wqt). Given the vector representations, a
query-document similarity value may be obtained by
comparing the corresponding vectors, using for example the
conventional vector product formula similarity (Q, D) =
Σwqkwdk. When the term weights are restricted to 0 and 1 as
previously suggested, the vector product measures the number
of terms that are jointly assigned to query Q and document D.
In practice it has proven useful to provide a greater degree
of discrimination among terms assigned for content
representation than is possible with weights of 0 and 1 alone.
The weights could be allowed to vary continuously between 0
and 1, the higher weight assignment near 1 being used for the
most important terms, whereas lower weights near 0 would
characterize the less important terms. A typical term weight
using a vector length normalization factor is wdk/(Σvector(wdi)2)1/2

for documents. When a length normalized term-weighting
system is used with the vector similarity function, one obtains
the well-known cosine similarity formula.

 More formally, a “definition” for VSM can be given as follows:

1. Both document D = (t0,wd0; t1,wd1;…; tt,wdt) and query Q = (q0,wq0;
q1,wq1;…; qt,wqt) are elements of the Euclidean space En, n = t + 1. In
other words, we may say that the formal framework of VSM is En.

2. Each term ti corresponds to a basis vector ei of space En.

3. The degree of relevance r of a document D represented by vector w
relative to query Q represented by vector q is based on the dot prod-
uct <w, q>.

4. If <w, q> = 0, then the document is not relevant, and hence it is not
retrieved. If <w, q> ≠ 0, then the document is considered to be rele-
vant and is retrieved.

8.2 Lattices in Vector Space Retrieval 161

5. Let <wi, q> ≠ 0, i = 1,…,m, correspond to documents Di. Then, the
documents D1,…,Dm are used to construct the hit list: D1,…,Dm are
sorted descendingly on their relevance degrees and are displayed to
the user in this order.

Figure 8.1 shows a visual example, in E3, for the mathematical formula-
tion of VSM.

Fig. 8.1. A visual example, in E3, of the mathematical formulation of VSM. The
set T of terms is T = {sun, rain, sky}. A document D = (sun, rain, rain, sky) and a
query Q = (sun, sun, sky, sky, sky) are represented as vectors. The corresponding

vectors of weights (using a frequency weighting scheme) are: w = (1, 2, 1), q = (2,
0, 3). The scalar product (equivalently the cosine of the angle) between these two

vectors is a measure of similarity between document and query.

 One should note that from a mathematical point of view, the formal
framework (i.e., linear space) adopted for VSR is, as can be seen, a pre-
cisely defined, sophisticated, and delicate mathematical structure (see
Chapter 7).

Example 8.1

Let the set of original documents (to be searched) be D = {D1, D2, D3},
where
D1 = Bayes’s principle: The principle that, in estimating a parameter, one

should initially assume that each possible value has equal probability
(uniform prior distribution).

162 8 Vector Space Retrieval

D2 = Bayesian decision theory: A mathematical theory of decision-making
that presumes utility and probability functions, and according to which
the act to be chosen is the Bayes act, i.e., the one with highest subjective
expected utility. If one had unlimited time and calculating power with
which to make every decision, this procedure would be the best way to
make any decision.

D3 = Bayesian epistemology: A philosophical theory that holds that the
epistemic status of a proposition (i.e., how well proven or well estab-
lished it is) is best measured by a probability, and that the proper way to
revise this probability is given by Bayesian conditionalization or a simi-
lar procedure. A Bayesian epistemologist would use probability to de-
fine concepts such as epistemic status, support or explanatory power and
to explore the relationships among them.

Let the set T of terms be:

T = {t1 = Bayes’s principle, t2 = probability, t3 = decision making,

t4 = Bayesian epistemology, t5 = Bayes}.

Conceiving the documents as sets of terms (together with their frequen-
cies), we can represent them as:

D1 = {(Bayes’s principle, 1); (probability, 1); (decision-making, 0);
 (Bayesian epistemology, 0); (Bayes, 1)}.
D2 = {(Bayes’s principle, 0); (probability, 1); (decision-making, 1);
 (Bayesian epistemology, 0); (Bayes, 2)}.

D3 = {(Bayes’s principle, 0); (probability, 3); (decision-making, 0);
 (Bayesian epistemology, 2); (Bayes, 3)}.

Here (Bayes’s principle, 1) means that term t1 = “Bayes’s principle” occurs
once in document D1, etc. As there are five terms, documents are repre-
sented in the form of weight vectors w1, w2, and w3 in the five-dimensional
Euclidean space E5:

w1 = (1, 1, 0, 0, 1), w2 = (0, 1, 1, 0, 2), w3 = (0, 3, 0, 2, 3).

Let the query Q be

Q = {(probability, 1); (decision-making, 1); (Bayes, 1)}.

Thus, the query vector is q = (0, 1, 1, 0, 1). The similarity between query
and documents may be given by the values of the inner product: <w1, q> = 2,
<w2, q> = 4, <w3, q> = 6.

8.2 Lattices in Vector Space Retrieval 163

8.2.2 Technology of Vector Space Retrieval

In what follows, an automatic method is presented that consists of the fol-
lowing steps (see Chapter 4 for details on technological aspects):

1. Given a set D of documents.

2. Identify terms.

3. Exclude stopwords.

4. Apply stemming to remaining words.

5. Compute for each document Dj and term ti a weight wij.

6. A query Qk coming from a user is also conceived as being a docu-
ment; a weight vector vk can be computed for it as well, in a similar
way.

7. Retrieval is defined as follows:
Document Dj is retrieved in response to query Qk if the docu-
ment and the query are "similar enough," i.e., a similarity
measure sjk between the document (identified by vj) and the
query (identified by vk) is over some threshold K.

There are a number of similarity measures used in VSR (Meadow et al.
1999), which can be expressed in a unified form as follows:

Theorem 8.1. (Dominich 2002) The similarity measures used in VSR can
be expressed in a compact form as

<wj,wQ>
ρ = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯,

 (||wj||⋅||wQ||)a⋅ (2c−b(|wj| + |wQ|) − c⋅<wj,wQ>)b⋅(min(|wj|,|wQ|))d

 where

• wj denotes the document vector of document Dj.
• wQ denotes the query vector of query Q.
• |.| denotes the sum of coordinates, i.e., |w| = |w1j … wnj| = w1j +… +wnj.
• ||.|| denotes the Euclidean norm.
• a, b, c, d ∈ {0, 1}.

164 8 Vector Space Retrieval

 Proof. It is shown that the usual similarity measures are obtained for
certain values of the parameters, as follows:

Dot product measure. If a = 0, b = 0, c = c, d = 0, then

ρ = <wj,wQ>.

Cosine measure. If a = 1, b = 0, c = c, d = 0, then

ρ = ⎯⎯⎯⎯
 ||wj||⋅||wQ||

Dice coefficient measure. For a = 0, b = 1, c = 0, d = 0, we have

 2<wj,wQ>
ρ = ⎯⎯⎯⎯

 |wj| + |wQ|

Jaccard coefficient measure. For a = 0, b = 1, c = 1, d = 0, we have

 <wj,wQ>
ρ = ⎯⎯⎯⎯⎯⎯⎯⎯⎯

 |wj| + |wQ| − <wj,wQ>

Overlap coefficient measure. If a = 0, b = 0, c = 0, d = 1, then

 <wj,wQ>

ρ = ⎯⎯⎯⎯⎯⎯
 min(|wj|, |wQ|)

 Table 8.1 summarizes the similarity measures depending on the values
of the parameters a, b, c, and d.

Table 8.1. The Similarity Measures Used in VSR
Depending on the Values of the Parameters a, b, c and d

a

b

c

d

Similarity measure

0 0 c 0 Dot product
1 0 c 0 Cosine
0 1 0 0 Dice coefficient
0 1 1 0 Jaccard coefficient
0 0 0 1 Overlap coefficient

 wj wQ < >,

8.3 Calculation of Meaning Using the Hilbert Lattice 165

 Theorem 8.1 is useful, first of all, for software developers in that the
general form can be programmed as a subroutine and can then be called by
appropriately particularizing the values of the parameters.

8.3 Calculation of Meaning Using the Hilbert Lattice

The operations of the Hilbert lattice ℜ(L) can be used to define (or inter-
pret) numerically meaning of words or documents in general (Widdows
and Peters 2003, Widdows 2003, 2004).

8.3.1 Queries with Negation

We have seen that the numerical expression of irrelevance in VSR is the
fact that the scalar product is equal to zero: a query Q is irrelevant to
document D if the query vector q is orthogonal to the document vector d,
i.e., <q, d> = 0. Now let q be the vector q = a ¬b (e.g., the query vector q
corresponds to the query Q = “information NOT retrieval”). In vector nota-
tion,

<q, a> ≠ 0 and <q, b> = 0, (8.1)

where a is the vector corresponding to “information” and b is the vector
corresponding to “retrieval.” In other words, the query vector is the projec-
tion of vector a onto subspace {b}⊥.
 A simple calculation shows that

 <a, b>

< a − ⎯⎯⎯ b, b > =
 ||b||

 <a, b> ||b||

 <a, b> − ⎯⎯⎯⎯⎯ = 0,
 ||b||

(8.2)

 which means that q ⊥ b. This means that query q is a single vector:

166 8 Vector Space Retrieval

q = a ¬b =

 <a, b>

 a − ⎯⎯⎯ b.
 ||b||

(8.3)

 Widdows and Peters conducted experiments to test the above negation
method. They used New York Times data consisting of 173 million words
from news articles written between July 1994 and December 1996. News
articles typically prefer some meanings of ambiguous words over others.
For example, the word “suit” was used mainly in a legal rather than a
clothing context. They tested the effectiveness of the above negation
method to find less common meanings by removing words belonging to
the predominant meanings. The results showed that the method was effec-
tive in removing the “legal” meaning from the word “suit” and the “sport-
ing” meaning from the word “play,” leaving “clothing” and “perform-
ance,” respectively. Moreover, removing a particular word also removes
concepts related to the negated word. Using the single-word query “suit”
returned the following list:

suit, lawsuit, suits, plaintiff, sued, damages, appeal.

Using the negated query “suit NOT lawsuit” returned:

pants, shirt, jacket, silk, dress, trousers,
sweater, wearing, satin, plaid, lace.

8.3.2 Queries with Disjunction

From a theoretical point of view, answering a disjunctive query may pro-
ceed along the following lines.
 Let q = a ∨ b be a Boolean query. Traditionally, q triggers the retrieval
of all documents containing either or both terms whose vectors are a and
b, respectively. In the Hilbert lattice ℜ(L), the ∨ operation is the join,
which means the direct sum of the vectors involved. Thus, the query q = a
∨ b may be taken to represent the spanned subspace Q = {pa + rb}, p, r ∈

. The similarity s(d, Q) between a document vector d and subspace Q
may be defined as

s(d, Q) = <d, PQ(d)>, (8.4)

8.4 Compatibility of Relevance Assessments 167

which is the scalar product of the document vector d and its projection
onto subspace Q (i.e., the component of d that lies in Q). In order to com-
pute the projection PQ(d), an orthonormal basis {bi} for Q should first be
constructed (e.g., using the Gram-Schmidt procedure, Section 7.11). Thus,
we have

s(d, Q) = <d, PQ(d)> =

< d,
i

 <d, bi>bi > =

i

 <d, bi>.

(8.5)

8.4 Compatibility of Relevance Assessments

Van Rijsbergen (2004) elaborates the basics for a formal expression of
relevance assessments in information retrieval.
 Let Q denote a single-term query, and let us assume the use of Boolean
retrieval to answer Q. Then, a document D is retrieved if it contains Q (i.e.,
D ‘is about’ Q), and it is not retrieved if it does not contain Q (i.e., D is not
about Q). Once D has been retrieved, the user can decide whether it is
relevant or not. The traditional working assumption is that relevance as-
sessments are independent of one another and are binary (i.e., a document
is either relevant or not). This can be expressed formally as follows:

(D ∧ R) ∨ (D ∧ ¬R), (8.6)

i.e., document D is either relevant (R) or nonrelevant (¬R). This can be
rewritten as

(D ∧ R) ∨ (D ∧ ¬R) = D ∧ (R ∨ ¬R), (8.7)

which is the well-known distributive law in the Boolean lattice ({True,
False}, ∨, ∧, ¬) of mathematical logic, and is an expression of compatibil-
ity between D and R.
 However, experiments confirmed the opposite: assessing the relevance
of retrieved documents D in response to Q in between two retrievals for P
is characterized by certain cognitive activity that affects the assessment of
relevance. (Thus D, which was found relevant in the first retrieval, may be
found irrelevant when assessed again after retrieval for some other
query P.) Hence, relevance assessments do not seem to be totally inde-
pendent of each other. In order to model this situation, which is justified by
practice, van Rijsbergen proposed using the Hilbert lattice.

168 8 Vector Space Retrieval

 As any projector in a Hilbert space has two eigenvalues (0 and 1, mean-
ing, e.g., irrelevance and relevance), it may be interpreted as (or assigned)
a logical proposition. Using the Hilbert lattice ℜ(L) of projectors, we can
express the compatibility condition as

(D ∧ R) ∨ (D ∧ R⊥), D, R ∈ ℜ(L). (8.8)

As the Hilbert lattice is not distributive, we have

(D ∧ R) ∨ (D ∧ R⊥) ≠ D ∧ (R ∨ R⊥), (8.9)

which means that compatibility does not hold (which is in accordance with
experimental results).

8.5 Vector Space Retrieval: Lattice-Lattice Mapping

We first show the following:

 Proof. Let us show first that A⊥ is a subspace of En. Let a, b ∈ A⊥ denote
two arbitrary vectors of A⊥. We have to show that a + b ∈ A⊥ and ra ∈ A⊥,
∀ r ∈ . For a = (a1,…,an) and b = (b1,…,bn) in A⊥, it follows that a ⊥ x,
b ⊥ x, ∀x = (x1,…,xn) ∈ A, i.e.,

a1x1 + … + anxn = 0, b1x1 + … + bnxn = 0.

From this, we obtain:

a1x1 + … + anxn + b1x1 + … + bnxn =

(a1+ b1)x1 + … + (an+ bn)xn = 0,

which means that a + b ⊥ x and thus a + b ∈ A⊥. In a similar manner, we
have

a1x1 + … + anxn = 0

ra1x1 + … + ranxn = 0

ra ∈ A⊥.

We now show that A⊥ is closed, i.e., the limit of every convergent
sequence belongs to A⊥. Let y1,…,yn,…∈ A⊥, yn ≠ 0, denote a nontrivial
convergent sequence: lim yn = y. This means that ||yn − y|| → 0. We

Theorem 8.2. The orthogonal complement A⊥ of any subset A ⊂ En of
space En is a closed subspace of En.

8.5 Vector Space Retrieval: Lattice-Lattice Mapping 169

demonstrate that y ∈ A⊥. Let us assume the opposite, i.e., y ∉ A⊥. Then, y
∈ A and so yn ⊥ y for every n, and hence <yn, y> = 0. Thus,

||yn − y|| → 0 ⇔

→+=+−=−
i i

i
i

ni
i

i
i

ini
i

niini yyyyyyyy 02)(22222 ,

where yn = (yn1,…,yni,…), yn = (y1,…,yi,…), which is only possible when yn
= y = 0. As this contradicts the assumption yn ≠ 0, we have y ∈ A⊥.

 Since the Euclidean space En is a Hilbert space, by using Theorem 7.1
and Lemma 8.2, we get the following:

Theorem 8.3. (Dominich and Kiezer 2007) Given a Euclidean space En
whose vectors (of weights) d ∈ En identify documents, the set ℜQ of docu-
ments retrieved in response to a query Q (represented as a vector q ∈ En)
is

ℜQ = {D | d = PA(d) + q, A = {q}⊥}.

 Proof. The retrieval of documents D represented as vectors w in re-
sponse to query Q represented as a vector q means constructing the set

ℜQ = {D | <q, w> ≠ 0}.

The orthogonal complement A = {q}⊥ (i.e., the set of documents that do
not share common terms with the query) corresponding to query Q is given
by the documents D whose vectors w are perpendicular to q, i.e.,

A = {q}⊥ =

{w | w ⊥ {q}} =

{w | <w, q> = 0}.

Set A is a closed linear subspace of space En (Lemma 8.2). It follows that
any element d ∈ En of space En can be uniquely written (Theorem 7.1) as

d = w + q,

where w ∈ A and q ∈ A⊥ = {q}.

 The projector PA for the elements d ∈ En of space En onto the set A is
defined as PA(d) = w, w ∈ A. Thus,

ℜQ =

{D | d = PA(d) + q, A = {q}⊥}.

170 8 Vector Space Retrieval

 Theorem 8.3 makes it possible to say that obtaining the set of retrieved
documents means projection. Figure 8.2 shows a visual example for
Theorem 8.3.

 From the point of view of practice, queries may be equal to or different
from each other. The following properties hold:

• The complement A = {q}⊥ of any query vector q is a closed subspace of
space En.

• Hence, A is a member of the subspace lattice, i.e., A ∈ ℜ(En).

• But not every subspace of En [in other words, not every element of lat-
tice ℜ(En)] is the complement of a query vector (e.g., the subspace {a,
b}⊥, a, b ∈ En, is not the complement of any query because a query is
represented by a single vector and not by two vectors).

 Thus, one may ask whether the queries (equivalently, their complements
or the corresponding sublattice) form some structure or not. An answer is
given by the following:

Theorem 8.4. The set of different and nonperpendicular queries is an at-
omistic, complemented, modular, nondistributive lattice.

 Proof. Let q and q′ denote two different and nonperpendicular query
vectors. Let v ∈ A = {q}⊥, v ≠ 0; hence <v, q> = 0. We show that vector v

q

d=PA(d)+q

PA(d)

A={q}⊥

Fig. 8.2. Visual example for Theorem 8.3 in plane. The
dashed-line vectors form the orthogonal complement

(i.e., perpendicular) vectors A = {q}⊥ of query vector q. Any
document vector d (triple-line vector) can be written as the sum

of query vector q and its projection PA(d) onto subspace A.

8.5 Vector Space Retrieval: Lattice-Lattice Mapping 171

cannot belong to A′ = {q′}⊥ at the same time (i.e., v cannot be perpendicu-
lar to both q and q′ at the same time). By Theorem 8.3, we have

q’ = PA(q’) + q.

Then,

<v, q’> = <v, PA(q’) + q> =

<v, PA(q’)> + <v, q> =

= <v, PA(q’)> + 0 = <v, PA(q’)> ≠ 0.

Hence, v cannot be perpendicular to q′. This means that the intersection
A ∩ A′ is empty: A ∩ A′ = ∅.
 Thus, the following lattice can be constructed:

• 0 = ∅.
• 1 = En.
• The other elements of this lattice are the sets A as atoms (Fig. 8.3).

 As this lattice is a sublattice of the⎯modular⎯lattice ℜ(En) of sub-
spaces, it is modular as well, which means that it is orthomodular at the
same time. However, it is not distributive:

A ∨ (A’ ∧ A’’) = A ∨ ∅ = A ≠

(A ∨ A’) ∧ (A ∨ A’’) = En ∧ En = En.

Fig. 8.3. Visualization of the query lattice.

 Theorem 8.4 entitles us to define a query lattice as follows:

Definition 8.1. The lattice of Theorem 8.4 is called a query lattice and is
denoted by L(Q).

En

A A’

∅

172 8 Vector Space Retrieval

 Theorem 8.4 also tells us that query lattice L(Q) is not a Boolean alge-
bra. We have seen (Theorem 8.3) that obtaining the set ℜ(Q) =
{D1,…,Di,…,Dm} of retrieved documents in response to a query Q means
performing projection. Since the set {D1,…,Di,…,Dm} is a subset of the set
D of all documents, i.e., ℜ(Q)∈℘(D), and the structure (℘(D), ∩, ∪, ⊆)
is a lattice, one may view retrieval as a lattice-lattice mapping. Thus, we
introduce the following definition (which represents a lattice theoretical
formulation of the VSR method):

Definition 8.2. The VSR method is a mapping ρ from the lattice (non-
Boolean algebra) of queries, L(Q), to the lattice (Boolean algebra) of
documents, ℘(D), based on projector P of the associated Hilbert space:

ρ: L(Q) → ℘(D),

⊆
∅=∅

=
=

otherwiseDD
Aif

EAifD
A

n

'
)(ρ

 Submodular set functions are an important class of functions (Recski
1989). They arise in many optimization applications (e.g., supply chain
management), and they have a role similar to that played by con-
vex/concave functions in continuous optimization. As an analogue of the
submodular set function, we introduce a submodular law for lattice-lattice
functions as follows:

Definition 8.3. A lattice-lattice function f: (L1, ∧1, ∨1) → (L2, ∧2, ∨2) is
submodular if

f(A ∨1 B) ∨2 f(A ∧1 B) ≤ f(A) ∨2 f(B),

∀A and B ∈ L1, where ≤ denotes the order relation in lattice L2.

 We now show that the retrieval has just this property, namely:

Theorem 8.5. The retrieval function ρ is not submodular.

 Proof. If we take Q, Q’ ∈ L(Q), both different from ∅ and En, we have

f(A ∨1 B) ∨2 f(A ∧1 B) =

ρ(Q ∨ Q’) ∪ ρ(Q ∧ Q’) =

ρ(En) ∪ ρ(∅) = D,

8.6 Discussion 173

but

f(A) ∨2 f(B) =

ρ(Q) ∪ ρ(Q’) ⊆ D.

In words, Theorem 8.5 is telling us that retrieval in response to the or-
thogonal complements of two distinct queries may not yield the entire set of
documents, albeit that these complements span the whole space (i.e., they
generate any conceivable query). This result is a lattice theoretical formula-
tion of a situation that can be easily imagined if one takes, e.g., binary
weights. For any two binary queries, q and q′, their orthogonal complements
(i.e., vectors with which their scalar product is zero; in other words, all com-
binations of nonquery terms) may not necessarily retrieve every document.

8.6 Discussion

8.6.1 Query Lattice and Free Will

Theorem 8.4 may also be interesting from a philosophical point of view as
it shows that queries, in general, form a structure having a certain order,
probably independently of users. This is not at all intuitive, as one would
think that queries do not form any structure, for they originate randomly
from users. Users do indeed have the freedom to formulate any query they
want to. However, queries ‘organize’ themselves (through their comple-
ments) into a very particular structure, namely into a special kind of lattice.
This is only seemingly a paradox: it originates from the fact that in the
VSR model queries are members, by definition (or by assumption), of a
very special space having a very sophisticated structure, i.e., linear space.
Users do have the freedom to formulate their information needs, but these
can only materialize in the form of queries within the properties and possi-
bilities of the linear space.

8.6.2 Vector Space Retrieval?

As we saw in Theorem 8.3, the vector-based retrieval mechanism may be
interpreted as a self-adjoint linear operator (projection) in linear space. We
should draw attention to one special aspect of this view that is concerned
with the space itself. It is assumed that the space is a linear space. In other
words, it is assumed that documents and queries, which belong to this
space, are vectors. It is well known that a vector constitutes a very special
type of quantity in that:

174 8 Vector Space Retrieval

• It is a “compound” quantity; usually this is expressed by saying that it
has a direction and a magnitude (as opposed to, e.g., a real number ex-
pressing the temperature of a body),

• Vectors allow for operations to be performed on them (e.g., they can be
added and the result is another vector of the same space); thus they form
a particular and well-defined structure (called linear space),

• Vectors do not depend on the basis of the space they belong to (the co-
ordinates of a vector are, in general, different in different bases; how-
ever, its magnitude and direction are unchanged), and so the scalar
product is invariant with respect to the change of the basis of the space.

 The question of whether the linear space is an adequate formal frame-
work for retrieval is not a trivial one. The linear space may only be an ade-
quate framework IF the documents and queries ARE vectors.
 But are they vectors?
 Wong and Raghavan (1984) showed that this case is not realistic; hence
it is not realistic to assume, in general, that documents and queries ARE
vectors. This may, of course, be assumed, but the linear space should per-
haps be interpreted rather as a metaphor than as a realistic formal frame-
work. This issue will be dealt with in detail in Chapter 9.

8.6.3 Vector Space Retrieval and Quantum Mechanics

As the Hilbert space and the Hilbert lattice formalism are also considered
to be of basic importance in ‘orthodox’ quantum mechanics, we may not
end this chapter without touching upon the connection between VSR and
quantum mechanics, a connection brought about by this common formal-
ism. Van Rijsbergen (2004) wrote extensively on this topic, mainly from
the point of view of what this connection might bring into IR. Here, we
wish to comment on this connection from a different angle based on Birk-
hoff and von Neumann (1936), Jauch (1968), Piziak (1978), Rédei (1996),
and Grinbaum (2005).
 The propositional calculus of quantum mechanics is usually (but maybe
misleadingly) referred to as quantum logic. This calculus is expressed in
terms of “yes-no” experiments, also called propositions. These are empiri-
cally verifiable propositions carrying one bit of information (i.e., they al-
low only two outcomes: either “yes” or “no”). Quantum logic is concerned
with the study of the formal structure of such propositions.

8.6 Discussion 175

 It is commonly agreed that the empirically testable propositions of New-
tonian physics form a Boolean algebra (i.e., they have the same structure
as the propositions of mathematical logic or the subsets of a set in set the-
ory). In other words, in Newtonian physics, the meet and join of two
propositions is a proposition, and independent observers can always read
off the measurements involved by the propositions and combine the results
logically.
 In quantum mechanics, however, not all propositions can be simultane-
ously measured to any accuracy (e.g., the momentum and the position of
an electron), which means that not all measurements are always compati-
ble. Thus, distributivity does not always hold (this is “the weakest link”).
Birkhoff and von Neumann suggested that distributivity be replaced by a
weaker property, namely modularity. Thus, they proposed that the model
to study the structure of propositions in quantum mechanics be an ortho-
complemented modular lattice (which they identified in the set of closed
subspaces of the Hilbert space).
 Subsequent research, however, has shown that the modular law is not
tenable either, and the law that has since been accepted is orthomodularity.
Thus, it is currently commonly accepted that the orthomodular lattice is an
appropriate framework for the structure of “yes-no” experiments in quan-
tum mechanics. The projectors of an infinite-dimensional Hilbert space
form just such a lattice.
 As can be seen, the quest for an adequate formal structure of proposi-
tions in quantum mechanics has always involved modeling concerns. At
this point, it is instructive to quote the creator of this formalism, John von
Neumann, as we think that the modeling concerns encountered in quantum
mechanics and vector space retrieval are very similar:

I do not believe absolutely in Hilbert space anymore. After all
… Hilbert space was obtained by generalising Euclidean
space … Now we begin to believe that it is not the vectors
which matter, but the lattice of all linear (closed) subspaces.
Because: (1) The vectors ought to represent the physical
states, … (2) and besides, the states are merely a derived no-
tion, the primitive (phenomenologically given) notion being
the qualities which correspond to the linear closed subspaces.
(Rédei 1996)

 Definition 8.2 is in harmony with the above quotation, and may thus
throw a new light onto the formal mechanism (“phenomenologically
given” quality) of VSR in that it says that retrieval is, in essence, a map-
ping process between two specially ordered sets (as special formal frame-
works), namely between two lattices. While the Boolean algebra character

176 8 Vector Space Retrieval

(relative to set union, intersection, and inclusion) of the document lattice
℘(D) may be intuitive, the non-Boolean algebra character of the other lat-
tice, the query lattice L(Q), is not at all intuitive or obvious. This latter
characteristic may be due to the fact that L(Q) is not being ‘organized’ by
set inclusion, intersection, or union. In other words, the two lattices L(Q)
and ℘(D), between which VSR acts as a very special (nonsubmodular)
mapping, have different internal organizations, or orderings; they possess
different underlying characters.
 This situation may suggest that, symbolically speaking, answers in gen-
eral are “out there,” already given in a nicely organized and well-behaved
formal structure, while information needs, as products of imagination and
free will, materialize in the form of queries that organize themselves into
an ordered formal structure that is not well behaved or symmetric in its
underlying operations (nondistributive).
 Further, comparing the Boolean algebra structure of logical propositions
and the non-Boolean algebra of quantum mechanical propositions, von
Neumann wrote:

The main difference seems to be that whereas logicians have
usually assumed that … negation was the one least able to
withstand a critical analysis, the study of mechanics points to
the distributive identity as the weakest link in the algebra of
logic. … Our conclusion agrees perhaps more with those cri-
tiques of logic which find most objectionable the assumption
that (a⊥ ∨ b = 1) (a b), or dually, (a ∧ b⊥ = 0) (b ⇐ a);
the assumption that to deduce an absurdity from the conjunc-
tion of a and ¬b justifies one in inferring that a implies b.”
(Birkhoff and von Neumann 1936)

 We note that (a⊥ ∨ b = 1) (a b) is equivalent to the distributive
law. Based on these results as well as on Theorem 8.5, we may say that:

• The underlying algebraic structure of mathematical logic and Newtonian
mechanics is a Boolean algebra.

• That of quantum mechanics is a non-Boolean (nonmodular) lattice.
• That of VSR is a nonsubmodular mapping to a Boolean lattice from a

non-Boolean lattice.

 Perhaps the main difference between VSR and quantum mechanics lies
not so much in their being characterized by modular and nonmodular
lattices, respectively (although that is an important difference), as in the
fact that retrieval has an added ingredient: a nonsubmodular mapping
(between two different kind of lattices). The algebraic framework of

8.7 Exercises 177

retrieval is not one lattice, as in mechanics, but two lattices (having
different types!) together with a special mapping between them. Thus,
retrieval seems to have a much more sophisticated algebra than quantum
mechanics.

8.7 Exercises

1. Implement a small VSR system using a collection of real documents
of your choice. Using the similarity measures from Theorem 8.1 (but
keeping the weighting scheme constant), compare the hit lists ob-
tained for real queries Qj (j = 1,…,p).

2. Using a set D of real documents of your choice, experiment with an-
swering a real query q having the form q = a ¬b using Eqs. (8.1)–(8.3).
Compare and comment the results.

3. Implement a small VSR system using a collection of real documents
of your choice. Let Qj (j = 1,…,p) be equivalent queries. Fixing a
weighting scheme and a similarity measure, compare and discuss the
hit lists for length-normalized as well as not normalized versions of
the queries.

4. Study the queries of the test collections ADI, CACM, CISI,
MEDLINE, TREC, etc., from the point of view of their being equiva-
lent or not equivalent to one another.

5. Let D denote a set of real documents (of your choice), and Qj
(j = 1,…,p) denote pairwise different (real) queries of your choice.
Construct the corresponding question lattice.

9 Fuzzy Algebra-Based Retrieval

Ask them what they think not about the
truth of theorems but about their importance.

(Évariste Galois)

This chapter explains how fuzzy algebras can be used to provide new or
novel retrieval methods.
 After presenting the necessary elements of tensor algebra, we show that
when the formal framework of information retrieval is a linear space of
terms, the scalar product of the space is not necessarily a similarity meas-
ure⎯contrary to the widely held belief.

Then, we present the required notions and results from fuzzy set theory
and show that the set of all fuzzy sets in [0; 1] is a fuzzy algebra. Docu-
ments and queries are elements of this algebra. By introducing the princi-
ple of invariance, latent semantic indexing, vector space retrieval, and gen-
eralized vector space retrieval acquire a correct formal framework with
which they are consistent (as opposed to the linear space as a framework).

Based on the notion of fuzzy algebra, the fuzzy entropy method and the
fuzzy probability method are discussed, together with experimental results
as to their relevance effectiveness.

The chapter ends with exercises and problems that are designed to en-
hance understanding of the mechanism and application possibilities of the
concepts and methods presented.

180 9 Fuzzy Algebra-Based Retrieval

9.1 Elements of Tensor Algebra

Any vector v of n-dimensional Euclidean space En can be represented as a
linear combination of basis vectors bi, i = 1,…,n:

v = p1b1 + …+ pnbn =
=

n

i
iip

1
b , p1,…,pn ∈ . (9.1)

As seen in Chapter 7, basis vectors bi need not be orthogonal or normal,
i.e., they may form a general Cartesian basis of the space. Let v = [v1 …
vn]T denote a vector in the orthonormal basis e1,…,en. Further, let gi denote
the matrix obtained from general basis vectors bi:

gi = [b1 … bi … bn] =

nn

n

n

in

i

i

n b

b
b

b

b
b

b

b
b

.
...
...
...
...

.
...
...
...
...

.
2

1

2

1

1

12

11

.

(9.2)

Matrix gi is called a basis tensor (Simmonds 1982). As vectors b1,…,bn are
basis vectors, rank(gi) = n. Hence, gi has an inverse, denoted by 1−

ig , that is
called its reciprocal basis tensor and is denoted by gi, i.e., gi = gi

−1. Vector
v (in an orthonormal basis) can also be written in the general basis gi. Let
the coordinates of vector v in basis gi be p1,…,pn. Thus, recalling that the
vector is invariant with respect to the change of basis, we have gi × [p1…
pn]T = v, from which, by multiplying by gi

−1 on the left, we obtain

gi
−1 × gi × [p1… pn]T = gi

−1 × v, [p1… pn]T = gi
−1 × v, (9.3)

since gi
−1 × gi = I. This means that the reciprocal basis tensor can be used to

compute the coordinates of any vector v in general basis gi:

pi = giv = gi
−1v, (9.4)

where pi = [p1… pn]T.

 Given now two vectors u = [u1 u2 … un] T and v = [v1 v2 … vn]T in a gen-
eral basis gi, we compute the scalar product of vectors u and v:

9.1 Elements of Tensor Algebra 181

 [b1 … bn] ×
nu

u
...

1

 × [b1 … bn] ×
nv

v
...

1

 =

[]nuuu ...21 ×

nnnn

n

...
b,bb,bb,b

b,b...b,bb,b

21

12111

...
 ×

nv

v
...

1

.

(9.5)

 The matrix of the scalar products of the basis vectors in Eq. (9.5) is
called the metric tensor and is denoted by gij, and gij = gi

Tgj. Thus, a com-
pact expression for the scalar product is

<u, v> = (ui)Tgijv j. (9.6)

As vector magnitude and direction are invariant with respect to the choice
of basis, the scalar product of two vectors is also invariant, i.e., the scalar
product is the same regardless of the basis of the space.

Example 9.1

Consider the three-dimensional Euclidean space E3 with the orthonormal
basis

e1 = [1 0 0]T, e2 = [0 1 0]T, e3 = [0 0 1]T.

Let u = [12 −6 9]T and v = [3 3 6]T be two vectors in this basis, and let

gi = −−
−

112
211
101

be a new (general) basis. The coordinates ui and vj of vectors u and v, re-
spectively, in the new basis gi are

ui =giu = [8.5 −4.5 −3.5]T,

vj = gjv = [2 3 −1]T.

Their scalar product (in an orthonormal basis) is

<u, v> = [12 −6 9] × [3 3 6]T = 72.

182 9 Fuzzy Algebra-Based Retrieval

The metric tensor of space E3 is

gij = gi
Tgj =

−
−
613
121

316
.

The scalar product of vectors u and v in the new basis gi is

<u, v> = (ui)Tgijvj = 72,

i.e., it is the same (as expected).

9.2 Similarity Measure and Scalar Product

Let us now consider, in detail, the following example in the orthonormal
Euclidean space of dimension two, E2. Its unit length and perpendicular
basis vectors are e1 = (1, 0) and e2 = (0, 1). Let us assume that we have the
following two terms: t1 = “computer” and t2 = “hardware,” which corre-
spond to the two basis vectors (or, equivalently, to coordinate axes) e1 and
e2, respectively (Fig. 9.1). Consider a document D being indexed by the
term “computer,” and having the weights vector D = (3, 0). Let a query Q
be indexed by the term “hardware” and have the weights vector Q = (0, 2).
The dot product <D, Q> is <D, Q> = 3 × 0 + 0 × 2 = 0, which means that
document D is not retrieved in response to query Q.

 In a thought-provoking theory paper, Wong and Raghavan (1984) argue
that:

The notion of vector in the vector space retrieval model
merely refers to data structure… the scalar product is simply
an operation defined on the data structure…The main point
here is that the concept of a vector was not intended to be a
logical or formal tool.

They then show why the model conflicts with the mathematical notion of
vector space.

9.2 Similarity Measure and Scalar Product 183

Fig. 9.1. Document and query weight vectors. The document vector D(3,0) and
query vector Q(0,2) are represented in the orthonormal basis (e1,e2). These basis

vectors are perpendicular to each other and have unit lengths. The dot product
<D,Q> is <D,Q> = 3 × 0 + 0 × 2 = 0 (which means that document D is not

Q).

 In order to present and illustrate the validity of the concerns with the
mathematical modeling as well as of the mathematical subtleties involved,
let us enlarge the example of Fig. 9.1 (Dominich and Kiezer 2007). From
the user’s point of view, because hardware is part of a computer, he/she
might be interested in seeing whether a document D also contains informa-
tion on hardware. In other words, he/she would not mind if document D
would be returned in response to query Q. It is well known that the term
independence assumption is not realistic. Terms may depend on each
other, and they often do in practice, as in our example. It is also known
that the independence assumption can be counterbalanced to a certain de-
gree in practice by, e.g., using thesauri. But can term dependence be cap-
tured and expressed in vector space? One possible answer is as follows. In-
stead of considering an orthonormal basis, let us consider a general basis
(Fig. 9.2).

t2=hardware

t1=computer

e2=(0,1)

e1=(1,0)

D=(3,0)

Q=(0,2)

retrieved in response to query

184 9 Fuzzy Algebra-Based Retrieval

 The basis vectors of a general basis need not be perpendicular to each
other and need not have unit lengths. In our example (Fig. 9.2) the term
“hardware” is narrower in meaning than the term “computer.” If orthogo-
nal basis vectors are used to express the fact that two terms are independ-
ent, then a narrower relationship can be expressed by taking an angle
smaller than 90° (the exact value of this angle can be the subject of ex-
perimentation, but it is not important for the purpose of this example).
Thus, let us consider the following two oblique basis vectors: let the basis
vector g1 corresponding to term t1 be b1 = (2, 0.5) and the basis vector b2
representing term t2 be b2 = (0.2, 1). The coordinates Di of the document
vector D in the new (i.e., the general) basis are computed as follows:

t2=hardware

t1=computer

e2=(0,1)

e1=(1,0)
D=(3,0)

Q=(0,2)

b1=(2,0.5)

b2=(0.2,1)
1.579

-.789

2.105

-.211

Fig. 9.2. Document and query weight vectors. The document vector D(3,0) and
query vector Q(0;2) are represented in the orthonormal basis (e1,e2). They are

also represented in the general basis (g1,g2); these basis vectors are not
perpendicular to each other, and do not have unit lengths. The coordinates of the
document vector in the general basis will be D(1.579,–0.789), whereas those of
the query vector will be Q(–0.211,2.105). The value of the expression <D,Q>
viewed as an inner product between document D and query Q is always zero,

regardless of the basis. But the value of the expression <D,Q> viewed literally as
an algebraic expression is not zero.

9.2 Similarity Measure and Scalar Product 185

Di = gi
−1× D = [b1 b2]−1 × D =

1

15.0
2.02 −

× [3 0]T =

=
−

−
053.1263.0
105.0526.0

× [3 0]T = [1.579 −0.789],

(9.7)

whereas the coordinates Qi (in general basis) of query vector Q are

Qi = gi
−1× Q = [b1 b2]−1× Q =

1

15.0
2.02 −

× [0 2]T =

= [−0.211 2.105].

(9.8)

Now, if dot product is interpreted⎯as is usual in VSR⎯as being the ex-
pression of similarity between document and query, then the dot product
<D, Q> of document vector D and query vector Q is to be computed rela-
tive to the new, general basis gi, i.e.,

<D, Q> = (Di)T × gij × Qj =

[1.579 −0.789] ×
04.19.0
9.025.4

 × [−0.211 2.105]T = 0.

(9.9)

It can be seen that the dot product of document vector D and query vector Q
is also equal to zero in the new basis (i.e., the document is not retrieved in
the general basis either). This should not be a surprise because, as is well
known, the scalar product is invariant with respect to the change of basis.
Thus, under the inner product interpretation of similarity (i.e., if the similar-
ity measure is interpreted as being the dot product between two vectors), the
no-hit case remains valid when using the general basis as well!
 The change of basis represents a point of view from which the properties
of documents and queries are judged. If the document is conceived as being
a vector, i.e., it is the same in any basis (equivalently, its meaning, informa-
tion content, or properties remain the same in any basis), then the inner
product is also invariant, and hence so is the similarity measure.
 But then, what is the point of taking a general basis? The orthonormal
basis is as good any other basis.
 Let us now assume or accept that the meaning or information content of
a document and query do depend on the point of view, i.e., on the basis of
the space. Then, the properties of documents and queries may be found to
be different in different bases. This is equivalent to not interpreting the
similarity measure as expressing an inner product, but rather considering it

186 9 Fuzzy Algebra-Based Retrieval

a numerical measure of how much the document and query share. Thus,
the similarity measure, which formally looked like the algebraic expres-
sion of an inner product, is literally interpreted as a mere algebraic expres-
sion (or computational construct) for a measure of how much the docu-
ment and query share and not as the expression of an inner product.
 In this new interpretation, in our example in Fig. 9.2, we obtain the fol-
lowing value for the similarity between document and query: 1.579 ×
(−0.211) + (−0.789) × (2.105) = −1.994, which is different from zero.
(Subjectively, a numerical measure of similarity should be a positive num-
ber, although this is irrelevant from a formal mathematical, e.g., ranking,
point of view). Thus, document D is being returned in response to Q, as in-
tended by:

• Using a general basis to express term dependence.
• Not interpreting similarity as being an inner product.

 The Euclidean space as a mathematical/formal framework for VSR is
very illustrative and intuitive. But as we have seen, there is no actual and
necessary connection between the mathematical concepts used (vector,
vector space, scalar product) and the concepts of IR (document, query,
similarity). In other words, there is a discrepancy (or inconsistency)
between the theoretical (mathematical) model and the effective retrieval
algorithm applied in practice. They are not consistent with on another: the
algorithm does not follow from the model, and, conversely, the model is
not a formal framework for the algorithm.
 Sections 9.3 and 9.4 present and discuss the latent semantic indexing
(LSI) and general vector space retrieval (GVSR) methods, which exhibit
the same inconsistency described above.

9.3 Latent Semantic Indexing Retrieval

9.3.1 Eigenvalue, Eigenvector

Let An,n be a regular matrix (i.e., det(A) ≠ 0). The solutions (roots) of the
following n-degree polynomial equation (called a characteristic equation;
Kurtz 1991),

|A − λI| = 0 (9.10)

are called eigenvalues (characteristic or latent roots) of A (I denotes the
unity matrix).

9.3 Latent Semantic Indexing Retrieval 187

Example 9.2

Let

=
42
51

A

be a regular matrix, det(A) = |A| = −6 ≠ 0. The characteristic equation is

,0
42

51
=

−
−

λ
λ

 i.e., (1 − λ)(4 − λ) − 5⋅2 = 0, which becomes λ2 − 5λ − 6 = 0. The eigen-
values of A are λ1 = 6 and λ2 = −1.

 Let λi, i = 1,...,n, be the eigenvalues of matrix An,n. The vectors (column
matrices) Xi satisfying the simultaneous system of linear equations

(A − λiI)Xi = 0 (9.11)

are called eigenvectors (characteristic or latent vectors) of matrix A. The
eigenvectors X1,…,Xn corresponding to distinct eigenvalues λ1,…,λn are
linearly independent of each other, and matrix S = [X1…Xn] has the prop-
erty S−1AS = D = diag(λ1,…,λn), where diag(λ1,…,λn) denotes a diagonal
matrix (called the canonical form) of eigenvalues.

Note: Eigenvalues are useful in many computations, e.g., in computing the
powers of matrix A. From the relation S−1AS = D we obtain that A = SDS−1
(after multiplying on the left by S and on the right by S−1):

SS−1ASS−1 = SDS−1, and SS−1= SS−1 = I.

The square of A, i.e., A2, can now be written as

A2 = AA = (SDS−1)(SDS−1) = SD(S−1S)DS−1 = SDDS−1 = SD2S−1.

In general,

An = SDnS−1.

Thus, we get a “cost effective” way to compute An: S and S−1 have to be
computed once, and Dn can be calculated in just a few steps using
recursion.

188 9 Fuzzy Algebra-Based Retrieval

9.3.2 Singular Value Decomposition

Given a matrix Am,n, m ≥ n (albeit that this condition is not necessary; see
the second paragraph of Section, 9.3.3, for a justification in IR), and let
rank(A) = r. The singular value decomposition (SVD) of Am,n is

A = USVT, (9.12)

where UTU = VTV = In,n (i.e., matrices U and V are orthogonal), and D is
the diagonal matrix S = diag(s1,...,sn), such that si > 0, i =1,...,r, and sj = 0, j
> r. The columns of U are called the left singular vectors, and those of V
the right singular vectors of A. The diagonal elements of S are the non-
negative square roots of the n eigenvalues of AAT, and are referred to as the
singular values of A. (In order to obtain the SVD of a matrix, mathematical
software or numerical algorithms can be used.)

9.3.3 Latent Semantic Indexing

In principle, LSI derives “artificial concepts” (Deerwester et al. 1990,
Berry and Browne 1999) to represent common-meaning components of
documents; these are represented by weight vectors indicating a level of
association between the documents and these concepts. It is claimed that
this representation is computationally economical because the dimension
of document vectors can be reduced to a number that is less than the num-
ber of terms (the number of terms being equal to the dimension of the term
space in which documents are originally represented), and further that LSI
better captures common meaning in documents.
 Let D = {D1,...,Dj,...,Dm} be a set of elements called documents and T =
{t1,...,ti,...,tn} a set of elements called terms. In general, in practical applica-
tions there are more documents than terms, i.e., m ≥ n (if n ≥ m, matrices U
and V, see below, will be interchanged). Let W = (wji)m×n be a weights ma-
trix, where wji denotes the weight of term ti in document Dj. (See Chapter 4
for details on technological aspects on obtaining W.) Let the rank of W be
r, i.e., rank(W) = r, and the SVD of W be

W = USVT. (9.13)

The SVD (9.13) of W may be viewed as a breakdown of the original rela-
tionships, represented by W, between documents and terms. In other
words, a set of artificial concepts is obtained that corresponds to a factor
value k = 2, 3,...,r (k is the number of selected columns, from left to right,
from U, and of selected rows, from top to bottom, from S). Thus,

Wk = UkSkVT (9.14)

9.3 Latent Semantic Indexing Retrieval 189

is an approximation of the original matrix W with the weights of artificial
concepts (which form a term space of lower dimension). Of course, if k =
r, then Wk = W. Matrix Wk is used for retrieval purposes in that a query q is
matched against Wk. Retrieval is performed by computing the value of
similarity (e.g., cosine, dot product) between vectors qk and Wk, e.g., Wk q.

Example 9.3

Consider the following documents:

D1 = Bayes’s principle: The principle that, in estimating a parameter, one
should initially assume that each possible value has equal probability (a
uniform prior distribution).

D2 = Bayesian conditionalization: This is a mathematical procedure with
which we revise a probability function after receiving new evidence. Let
us say that we have probability function P(.) and that through observa-
tion I come to learn that E. If we obey this rule, our new probability
function, Q(.) should be such that for all X, Q(X) = P(X|E) we are then
said to have “conditionalized on E.”

D3 = Bayesian decision theory: A mathematical theory of decision-making
that presumes utility and probability functions, and according to which
the act to be chosen is the Bayes act, i.e. the one with highest subjective
expected utility. If one had unlimited time and calculating power with
which to make every decision, this procedure would be the best way to
make any decision.

D4 = Bayesian epistemology: A philosophical theory that holds that the
epistemic status of a proposition (i.e., how well proven or well estab-
lished it is) is best measured by a probability and that the proper way to
revise this probability is given by Bayesian conditionalization or similar
procedures. A Bayesian epistemologist would use probability to define
concepts such as epistemic status, support, or explanatory power and
explore the relationships among them.

Let the terms be

t1 = Bayes’s principle, t2 = probability,
t3 = Bayesian conditionalization, t4 = decision-making.

Let the frequency term-document matrix W be

=

0130
1010
0130
0011

W .

190 9 Fuzzy Algebra-Based Retrieval

The rank of W is equal to 3, and the singular value decomposition of W is
W = USVT, where

−
−−−

−−
−−

=

707.00214.0674.0
0707.0674.0214.0
707.00214.0674.0
0707.0674.0214.0

U ,

= 0

0000
0100
00047.10
00068.4

S ,

−−−
−

−−−
−−

=

289.0707.0644.0046.0
866.00409.0288.0
289.00062.0955.0

289.0707.0644.0046.0

V .

Taking the factor value k = 2, we find the approximation of Wk [Eq.
(9.14)]) to be

=

5.0130
5.0015.0

0130
5.0015.0

kW .

Now consider query q consisting of two terms: q = probability, decision-
making. The corresponding query matrix is

[0 1 1 0],

which is to be compared—in terms of a similarity measure—with Wk. For
example, Wk⋅q = [1 4 1 4]T, where q = [0 1 1 0]T.

9.4 Generalized Vector Space Retrieval 191

 Retrieval in LSI uses a vector-space-based approach (or framework),
just like the traditional VSR method. Originally, documents are repre-
sented, using matrix W, as vectors in the term space whose dimension is n.
Using the SVD of W, we say that documents are represented in a vector
space of artificial concepts, whose dimension is k (k ≤ r ≤ n). The expres-
sion Wq for similarity is interpreted as having the meaning of a scalar
product. If this is the case, Wq = Wkq (because documents and queries re-
main the same vectors even if they are viewed as vectors of a subspace of
the original space). Equality occurs when W = Wk, i.e., when k =
r = rank(W). Otherwise, the expression Wkq may not be viewed as having
the meaning of scalar product.

9.4 Generalized Vector Space Retrieval

Wong and Raghavan (1984) showed why the vector space model of IR
conflicts with the mathematical notion of a vector space. Further on, they
rightly observed that the usual similarity functions (dot product, Dice coef-
ficient, and Jaccard coefficient) can also be written in a general basis (not
just in the orthonormal basis). They interpret the metric tensor G, which
they refer to as the correlation matrix, of the space as expressing correla-
tions between terms ti, i = 1,…,n, viewed as basis vectors. G can be used as
a model of term dependences: G = (<ti, tj>)n×n, where ti denotes the basis
vector corresponding to term ti.
 Subsequently, Wong et al. (1985) proposed an automatic (and very
computationally demanding) method to build correlation matrix G. The
value of similarity S between a document and a query was computed as the
matrix product between:

• Query vector q expressed in general basis.
• Metric tensor, i.e., G.
• Document vector d in orthonormal basis.

Thus, S = qT⋅G⋅d. The method was referred to as the generalized vector
space model (GVSM). If d had been expressed in a general basis, then S
would have been the scalar product of q and d in that basis (and would
have been the same as that in an orthonormal basis). Thus, the expression
for S seems to be a mere computational construct rather than the expres-
sion of a scalar product in a general basis.

192 9 Fuzzy Algebra-Based Retrieval

9.5 Principle of Invariance

In this section, a principle is proposed that is designed to deal with the in-
consistencies and anomalies discussed in Sections 9.2–9.4, which stem
from taking linear space as a formal framework for retrieval and conceiv-
ing similarity as a scalar product.
 The concepts of position, translation, rotation, velocity, acceleration,
force, etc. are primarily physical concepts—not just abstract or mathemati-
cal notions (Feynman et al. 1964). They reflect certain aspects of reality
and thus possess underlying properties such that the physical laws are the
same in any coordinate system regardless of the basis of the space. For ex-
ample, the position of a physical object in space does not depend on the
angle from which we look at it or on the choice of the coordinate axes (i.e.,
on the choice of the basis of the space). The position of a physical object is
invariant with respect to the basis of the space; the same holds true for ve-
locity, force, etc. Such entities are referred to as vectors, for short. In other
words, vectors are entities that have an “identity” (namely magnitude and
direction), and this identity is preserved in any system or basis; i.e., it is
invariant with respect to the change of the basis of the space. An immedi-
ate⎯but very important!⎯consequence of this is that the quantity called
the scalar product of two vectors is also preserved; i.e., it is invariant with
respect to the choice of the basis of the space. In other words, apart from
vectors, the scalar product is another quantity that is basis-invariant. The
mathematical apparatus developed to deal correctly with the physical op-
erations involved (e.g., the addition of velocities) is referred to as vector
algebra or tensor calculus; see, e.g., Lánczos (1970) and Simmonds (1982).
 As it is well known, one of the basic concepts of IR is that of a docu-
ment, i.e., that of objects or entities to be searched. (Their physical appear-
ance, such as the language in which they are written or strings of bits on a
computer disk, etc., is now irrelevant.) The notion of document is not
merely a mathematical or abstract concept. Just as in physics, it is used to
reflect certain aspects of reality. But unlike in physics, a document need
not have an identity (meaning, content, property) that is basis-invariant,
and a user basically operates with the identity. This may depend on the
point of view or on the judgment of the user (mathematically, on the basis
of the space). As a consequence, and as we have already seen, even if the
space is assumed to be, or is related to, a linear space, the similarity meas-
ure need not necessarily be viewed as being the expression of an inner
product. This is rather an option or hypothesis that we may or may not ac-
cept, or accept to a certain extent. Thus, it is reasonable to introduce the
following principle:

9.6 Elements of Fuzzy Set Theory 193

Principle of Invariance (PI). In information retrieval, the identities
of entities are preserved with probability π.

The case when π = 1 means that the identity of entities (documents, que-
ries) remains the same, regardless of any point of view or interpretation. If,
however, π < 1, the identity of entities does depend on a point of view or
interpretation.

 Based on PI, we may state the following:

• In the classical VSR method, π = 1, the notion of linear space is used as
framework, documents and queries are vectors, and the similarity is the
scalar product of the vector space.

• In the LSI IR method, π < 1, the notion of linear space is used as
framework, documents and queries are vectors belonging to different
spaces having different dimensions (depending on the k factor), and the
similarity is the scalar product of the vector space.

• In the GVSR method, π = 1, the notion of linear space is used as a
framework and documents and queries are vectors, but the similarity is
not the scalar product of the vector space.

 In what follows, new or novel retrieval methods are proposed for the
case when π < 1 that do not use linear spaces as frameworks.

9.6 Elements of Fuzzy Set Theory

9.6.1 Fuzzy Set

Let X be a finite set. A fuzzy set Ã in X is a set of ordered pairs (Zimmer-
man 1996),

Ã = {(x, μÃ(x)) | x ∈ X}, (9.15)
where μ: X → [0; a] ⊂ , a > 0, is called a membership function (or degree
of compatibility or truth function), meaning the degree to which x belongs
to Ã. Elements with a zero degree membership are normally not listed.
 The fuzzy set Ã in X for which μÃ(x) = 0, ∀x ∈ X is denoted by o. The
fuzzy set Ã in X for which μÃ(x) = a, ∀x ∈ X is denoted by l.

Example 9.4

Let X = {1, 10, 15, 18, 24, 40, 66, 80, 100} be a set denoting possible ages
for humans. Then, the fuzzy set Ã = “ages considered as young” could be
the set {(10, 1), (15, 1), (18, 1), (24, 1), (40, 0.7)}.

194 9 Fuzzy Algebra-Based Retrieval

 The fuzzy set Ã = “real numbers much larger than 10” could be the
fuzzy set Ã = {(x, μÃ(x)) | x ∈ X}, where

μÃ(x) =

−
+

≤

otherwise

x

x

2)10(
11

1
10,0

.

A graphical representation of the fuzzy set Ã = “real numbers much larger
than 10” is illustrated in Fig. 9.3.

10 20 30 40 50
0.4

0.6

0.8

Fig. 9.3. Graphical representation of the fuzzy set Ã = “real numbers
much larger than 10.”

 If the membership function can only take on two values, 0 and a, the
fuzzy set becomes a (classical or crisp) set: an element either belongs to
the set (the membership function is equal to a) or not (the membership
function is equal to 0). If the membership function takes on values in the
interval [0; 1], i.e., a = 1, the fuzzy set is called a normalized fuzzy set. In
the rest of this chapter, we consider term weights as values of some mem-
bership function. Any membership function can be normalized (e.g., by
division by a). While it is true that not all weighting schemes result in
weights between 0 and 1 (e.g., the inverse document frequency weighting
scheme may yield weights greater than 1), within document weights can
always be normalized (e.g., by division by the largest weight) so as to be
between 0 and 1 (while keeping the relative importance of terms within the
document). Thus, in what follows we are considering normalized fuzzy
sets.

9.6 Elements of Fuzzy Set Theory 195

9.6.2 Fuzzy Intersection

Given two fuzzy sets Ã1 and Ã2 in X with membership functions μ1 and μ2,
respectively, the membership function μ of fuzzy intersection Ã = Ã1 Ã2
can be defined in several ways. The usual definitions are

Standard: μ(x) = min (μ1(x), μ2(x)), ∀x ∈ X,

Algebraic product: μ(x) = μ1(x)μ2(x), ∀x ∈ X.

(9.16)

9.6.3 Fuzzy Union

Given two fuzzy sets Ã1 and Ã2 in X with membership functions μ1 and μ2,
respectively, the membership function μ of the fuzzy union Ã = Ã1 Ã2
can be defined in several ways. The usual definitions are

Standard: μ(x) = max (μ1(x), μ2(x)), ∀x ∈ X,

Algebraic product: μ(x) = μ1(x) + μ2(x) − μ1(x)μ2(x), ∀x ∈ X.

(9.17)

Example 9.5

Let Ã1 = {(10, 0.5), (15, 1), (18, 1), (24, 1), (40, 0.4)} and Ã2 = {(24, 0.1),
(40, 0.3), (70, 0.9)} be two fuzzy sets. Their standard fuzzy union is Ã1
Ã2 = {(10, 0.5), (15, 1), (18, 1), (24, 1), (40, 0.4), (70, 0.9)}, and their stan-
dard fuzzy intersection is Ã1 Ã2 = {(24, 0.1), (40, 0.3)}.

9.6.4 Fuzzy Complement

The membership function μ¢Ã(x) of fuzzy complement ¢Ã of fuzzy set Ã in
X is defined as

μ¢Ã(x) = 1 − μÃ(x) , ∀x ∈ X. (9.18)

9.6.5 Fuzzy Subset

Given two fuzzy sets Ã1 and Ã2 in X with membership functions μ1 and μ2,
respectively, fuzzy sets Ã1 and Ã2 are equal to each other, i.e., Ã1 = Ã2, if
μ1(x) = μ2(x), ∀x ∈ X. If μ1(x) ≤ μ2(x) ∀x ∈ X, we say that fuzzy set Ã1 is a
fuzzy subset of fuzzy set Ã2, i.e., Ã1 Ã2.

196 9 Fuzzy Algebra-Based Retrieval

9.7 Retrieval Using Linear Space

Consider a set

T = {t1, t2,…,ti,…,tn} (9.19)

of terms, and let

D = {D1, D2, …,Dj,…,Dm} (9.20)

denote a set of documents indexed by T. As is usual in IR, let wij denote the
weight of term ti in document Dj. Let Q denote a query and qi the weight of
term ti in Q, i = 1,…,n. We do not make any assumption as to whether
documents and queries are elements of a linear space or not. They simply
form a collection. Each document is represented by a sequence of numeric
weights: Dj is represented by the sequence of weights w1j,…,wij,…,wnj.
Likewise Q is represented by the sequence q1,…,qi,…,qn. In the traditional
VSR model, the expression = ni ijiwq..1 is conceived as the scalar product of
the space of terms whose vectors represent the documents. As we have al-
ready seen, this view leads to inconsistencies, so let us drop it and accept
that π < 1. Thus, documents and queries may have multiple identities (they
are not vectors), and the expression = ni iji wq..1 is interpreted simply as a
numerical measure of similarity between document Dj and query Q. We
may assume, without restricting generality, that 0 ≤ wij ≤ 1. Under these
conditions, any document Dj (and any query Q) may be identified with
(described by) a fuzzy set Ãj:

Ãj = {(ti, μj(ti)) | ti ∈ T, i ∈ {1,…,n}, μj(ti) = wij}. (9.21)

Let T = [0; 1]T denote the set of all possible fuzzy sets in T. Then, in gen-
eral, any conceivable document or query is an element of T. Similarity is
defined in the following way:

Definition 9.1. Function σ: T × T → defined as

σ(Ãj, Ãk) =
=

n

i
ikij tt

1

)()(μμ

is called a similarity measure.

 We now use a linear space, but not as a framework, but rather as a tool
or operator to design and propose a retrieval method that is based on T as a
formal framework.

9.7 Retrieval Using Linear Space 197

 It is possible to relate any document Ãj = {(ti, μj(ti))} to an n-
dimensional real linear space L (having basis b1,…,bn):

• The values μj(t1),…,μj(tn) of the membership function can be used to
form a vector vj of space L as the linear combination vj = μj(t1)⋅b1 +…+
μj(tn)⋅bn.

• Thus, every document Ãj may be viewed as corresponding (not being
identical) to vector vj ∈ L with coordinates μj(ti), i.e., vj = (μj(t1),
…,μj(tn)).

 (Documents are related to vectors, but this does not mean that they be-
come vectors.) The following retrieval method can be formulated in a
natural way:

1. Let T = {t1,...,ti,...,tn} denote a set of terms.

2. Let Ãj = {(ti, μj(ti) | ti ∈ T, i = 1,…,n } denote documents as
elements of T = [0; 1]T, j = 1,...,m.

3. Let L be a real linear space.

4. Let any document Ãj correspond to vector vj of space L such
that μj(ti), i = 1,…,n, corresponds to the ith coordinate of vec-
tor vj, i.e., vj = [μj(t1), …,μj(tn)].

5. Let Q = {(ti, μQ(ti) | ti ∈ T, i = 1,…,n } denote a query, Q ∈ T,
and let q = (μQ(t1), …,μQ(tn)) ∈ L denote the corresponding
query vector.

6. The documents retrieved in response to query Q are obtained
using Definition 9.1.

Steps 2–5 can be expanded in the following way.

(a) Let TDn×m = (fij)n×m denote the frequency term-document matrix, i.e.,
fij denotes the number of times term ti occurs in document Dj.

(b) Let Q = (f1,…, fi,…, fn) denote a query, where fi is the number of
times term ti occurs in query Q.

(c) Compute, using some weighting scheme, a term-document weight
matrix Wn×m = (dj)m = (wij)n×m for documents wij = μj(ti), and one for query
q = (q1, …,qi, …,qn).

(d) Let us consider a general basis gi of Euclidean space En:

198 9 Fuzzy Algebra-Based Retrieval

gi = (b1…bn) =

nnn

n

bb

bb

...
.....

...

1

111

.

A general basis gi can be obtained as follows (Silva et al. 2004):
Correlations are determined among terms, and the corresponding
axes are rotated in space. Thus, “proximity” between basis vectors
is related to the degree of correlation (dependence) between the
respective terms. The closer the vectors are, the greater the de-
pendence. A confidence index cij is computed between any two
terms ti and tj: :

{ }
m

DttD
c ji

ij

∈
=

,|
.

 (e) The coordinates bik, k = 1,…,n, of basis vector bi are given by

=
=

=
otherwise

jkif
ikif

b ij

ij

ik

0
cos
sin

θ
θ

 where θij = 90⋅ (1 − cij).
 f) Compute the coordinates D’j = (w’1j,…,w’ij,…, w’nj) of every
 document Dj in a general basis as follows:

D’j = gi
−1⋅dj.

 g) Similarly, the coordinates q’ = (q’1,…,q’i,…,q’n) of the query in a
 general basis are

q’ = gi
−1⋅q.

 h) The similarity σj between document Dj and query Q is
 computed using Definition 9.1:

σj =
=

⋅
n

i
iji wq

1
'' .

 The retrieval method was tested by Silva et al. (2004) on the test collec-
tions CACM, CISI, and TREC-3. Relevance effectiveness was higher than
that of the traditional VSR method by 7, 14, and 16%, respectively.
 We note that the correlation cij between terms may be computed in other
ways as well, e.g., with the EMIM (expected mutual information measure)
method (van Rijsbergen 1979, Savoy and Desbois 1991):

9.8 Fuzzy Algebra-Based Retrieval Methods 199

Term Correlation Using the EMIM Method

1. Let t1,…,ti,…,tj,…,tn be terms. For every pair of terms ti and tj perform
the following steps:

2. Determine Sij: the number of documents indexed by both ti and tj.

3. Determine Sj: the number of documents indexed by tj but not by ti.

4. Determine Si: the number of documents indexed by ti but not by tj.

5. Determine S: the number of documents not indexed by either ti or tj.

6. Compute the EMIM Iij (= cij) for ti and tj as follows:

)()(
ln

)()(
ln

)()(
ln

)()(
ln

SSSS
SS

SSSS
SS

SSSS
S

S
SSSS

S
SI

ijiiij

i
i

jijj

j
j

jijiij

ij
ijij

+×+
×+

+×+
×

+
+×+

×+
+×+

×=

 The EMIM values can be used to construct a tree of term dependencies
known as the maximum spanning tree of the graph whose nodes are the
terms and weighted edges that correspond to the respective EMIM values
(i.e., Iij is the weight of the edge between the nodes corresponding to terms
ti and tj). The tree can be constructed using the following method:

1. Sort descendingly the EMIM values to obtain a sequence I1,…,IN.

2. Initialize the tree with the nodes as well as the edge connecting them
corresponding to I1.

 3. Take the next value Ij from the sequence, and ‘grow’ the tree with the
nodes and edge corresponding to Ij if this does not yield a cycle. If this
does yield a cycle, repeat step 3.

9.8 Fuzzy Algebra-Based Retrieval Methods

In this section, we propose new retrieval methods based on the notions of
algebra and measure, which stem from the following observations. The
similarity measure σ(Ãi, Ãj) =

∈Tt ji tt)()(μμ of Definition 9.1 may be

viewed as the fuzzy cardinality of the fuzzy intersection of Ãi and Ãj based
on an algebraic product, i.e., Ãi Ãj = {(t, μ(t)) | μ(t) = μi(t)μj(t)}. (The

200 9 Fuzzy Algebra-Based Retrieval

cardinality of a fuzzy set is equal to the sum of the values of its
membership function.) Further, if the fuzzy sets Ãi and Ãj are disjoint, the
cardinality of their fuzzy union (based on the algebraic product) is equal to
the sum of their cardinalities. This property⎯called additivity⎯is
characteristic of the mathematical notion of measure. These observations
suggest looking for or analyzing other mathematical measures (other than
fuzzy cardinality) that may then be used as similarity functions.
 In the rest of this chapter, the above ideas are presented and discussed in
detail. Two retrieval methods are proposed using new measures as simi-
larities. Experiments on the relevance effectiveness offered by these meas-
ures are also reported.

9.8.1 Fuzzy Jordan Measure

The notion of mathematical measure is an abstraction of length, area, vol-
ume, etc. The mathematical theory of measure, known as measure theory,

 First, we introduce the notion of algebra as an abstract space (Kiyosi
2000):

Definition 9.2. Let X denote a set. A collection C of sets from ℘(X), C ⊆
℘(X), is called an algebra (equivalently clan, field, or finitely additive
class) if the following conditions hold:

a) X ∈ C.
b) ∀ A, B ∈ C A ∪ B ∈ C.
c) ∀ A ∈ C CXA ∈ C .

From Definition 9.2 it follows that:

• ∅ ∈ C because CXX = ∅.
• The union of a finite number of sets Ai (i=1,...,m) from C belongs to C ,

i.e., A1 ∪...∪ Am ∈ C.

The notion of measure is defined over an algebra as a set function that
‘measures’ a set (Kiyosi 2000):

Definition 9.3. A function : C → is called a Jordan measure over an
algebra C if the following conditions hold:

offers a theoretical and formal basis for integration theory and probability
theory. In words, a measure is a nonnegative function of subsets of a set
such that the measure of the union of a sequence of mutually disjoint sets
is equal to the sum of the measures of the sets. Formally, a concept of
measure can be defined in the following way.

9.8 Fuzzy Algebra-Based Retrieval Methods 201

1. (A) ≥ 0, ∀A ∈ C (nonnegativity).
2. (∅) = 0.
3. ∀A, B ∈C, A ∩ B ∈ ∅ (A ∪ B) = (A) + (B) (additivity).

As an analogue of the notion of algebra (Definition 9.2), we introduce its
fuzzy counterpart, i.e., a generalization to arbitrary values of the interval
[0; 1]:

Definition 9.4. Let X denote a set. A collection C of fuzzy sets in [0; 1]X is
called a fuzzy algebra (equivalently fuzzy clan, fuzzy field, or fuzzy finitely
additive class) if the following conditions hold:

• I ∈ C.
• ∀ Ã1, Ã2 ∈ C Ã1 Ã2 ∈ C.
• ∀ Ã ∈ C ¢Ã ∈ C .

 From Definition 9.4 it follows that o ∈ C because o = ¢I. We now de-
fine our fuzzy algebra as a formal theoretical framework for retrieval: Let
T denote a set of terms: T = {t1,…,ti,…,tn} and T = [0; 1]T denote the set of
all fuzzy sets in T. Then, T may be taken as a general framework:

Theorem 9.1. T is a fuzzy algebra with respect to an algebraic product.

 Proof. We have to show that the conditions of Definition 9.4 hold. Ob-
viously, we have I ∈ T. Let us now consider two arbitrary fuzzy sets Ãi, Ãj
∈ T. Their algebraic product union is Ãi Ãj = {(t, μ(t)) | μ(t) = μi(t) + μj(t)
− μi(t)μj(t)}. Because μi(t) + μj(t) − μi(t)μj(t) ∈ [0; 1], the fuzzy union Ãi
Ãj belongs to T. Further, for any fuzzy set Ã ∈ T the fuzzy complement ¢Ã
= {(t, 1 − μ(t))} belongs to T because 1 − μ(x) ∈ [0; 1].

 As an analogue of the Jordan measure (Definition 9.3), we introduce the
notion of a fuzzy Jordan measure on a fuzzy algebra:

Definition 9.5. A fuzzy Jordan measure on a fuzzy algebra C is a function
m : C → such that:

• m (Ã) ≥ 0, ∀Ã ∈ C (nonnegativity).
• m (o) = 0.
• Ãi,Ãj∈C, Ãi Ãj = o m (Ãi Ãj) = m (Ãi) + m (Ãj) (additivity).

 Let us now define a concept for ‘how many elements’ there are in a
fuzzy set (Zimmerman 1996).

202 9 Fuzzy Algebra-Based Retrieval

Definition 9.6. The fuzzy cardinality κ of a fuzzy set Ãi in T is the sum of
the values of its membership function:

κ (Ãi) =
=

n

j
ji t

1
)(μ .

We now prove that fuzzy cardinality is a fuzzy Jordan measure on the
fuzzy algebra T.

Theorem 9.2. Fuzzy cardinality is a fuzzy Jordan measure on the fuzzy al-
gebra T.

 Proof. We obviously have that κ (Ãi) ≥ 0 for every Ãi from T, and that
κ(o) = 0. Further, we have to show that the cardinality of two disjoint
fuzzy sets is equal to the sum of their cardinalities. Let

Ãi Ãj = {(t, μ(t)) | μ(t) = μi(t)μj(t)} = ∅ ⇔

⇔ μi(t)μj(t) = 0.

Hence,

κ (Ãi Ãj) =

= κ [{(t, μ(t)) | μ(t) = μi(t) + μj(t) − μi(t)μj(t)}] =

= κ [{(t, μ(t)) | μ(t) = μi(t) + μj(t)}] =

= =+=+
∈∈∈ Tt

j
Tt

i
Tt

ji tttt)()())()((μμμμ

= κ (Ãi) + κ (Ãj).

 Thus, the following method for designing new or novel similarity meas-
ures for retrieval may be given:

• Look for/design new fuzzy Jordan measures.
• Perform experiments to measure the relevance effectiveness of a re-

trieval system whose similarity is based on the thus defined fuzzy Jor-
dan measure.

• Depending on the results obtained, reject, accept, or fine-tune the simi-
larity function.

 In the next three sections, the following retrieval methods will be pro-
posed and tested (Dominich and Kiezer 2007):

9.8 Fuzzy Algebra-Based Retrieval Methods 203

• Fuzzy entropy retrieval method.
• Fuzzy probability retrieval method.

9.8.2 Fuzzy Entropy Retrieval Method

Let us first introduce the concept of fuzzy entropy (Zimmerman 1996):

Definition 9.7. The fuzzy entropy of a fuzzy set Ã = {(x, μ(x)) | ∀x ∈ X} in
a finite set X is given by: H(Ã) =

∈

⋅−
Xx

xx)(log)(μμ .

 We now show that fuzzy entropy is a measure in our framework of
documents and queries.

Theorem 9.3. Fuzzy entropy H is a fuzzy Jordan measure on the fuzzy al-
gebra T.
 Proof. We know from mathematical analysis that)log(lim

0
yy

y→
 = 0.

From this, we have that H(o) = 0. Obviously, H(o) ≥ 0. Further, we have
to show that the entropy of two disjoint fuzzy sets is equal to the sum of
their fuzzy entropies. Let Ãi and Ãj denote two disjoint fuzzy sets, i.e., Ãi
Ãj = {(t, μ(t)) | μ(t) = μi(t)μj(t), ∀t ∈ T} = ∅ ⇔ μi(t)μj(t) = 0 (in other
words it cannot happen that both μi(t) and μj(t) are different from zero; i.e.,
either both are zero or one of them is zero and the other is not zero). We
can write that

H(Ãi Ãj) =

= H[{(t, μ(t)) | μ(t) = μi(t) + μi(t) − μi(t)μj(t)}] =

∈

−+×−+−
Tt

jijijiji tttttttt))()()()(log())()()()((μμμμμμμμ

=
∈

+×+−
Tt

jiji tttt))()(log())()((μμμμ =

=
∈ ∈

=+−+−
Tt Tt

jijjii tttttt))()(log()())()(log()(μμμμμμ

= H(Ãi) + H(Ãj).

 The following retrieval method, based on fuzzy entropy as similarity,
can now be formulated:

204 9 Fuzzy Algebra-Based Retrieval

Fuzzy Entropy Retrieval Method

1. Given terms T = {t1,…,tn}, and documents Dj, j = 1,…,m.

2. Let Wn×m = (wij)n×m denote a term-document matrix, where wij is the
weight of term ti in document Dj (see Chapter 4 for technological
aspects).

3. Given a query Q. The query weights are q1,…,qi,…,qn, where qi
denotes the weight of term ti in Q.

4. The similarity σj between document Dj (conceived as a fuzzy set)
and query Q (conceived as a fuzzy set) is computed as the fuzzy
entropy of their intersection, i.e., H (Dj Q):

=

⋅⋅⋅−=
n

i
ijiijij wqwq

1
)log(σ .

9.8.3 Fuzzy Probability Retrieval Method

Let p(ti) denote a frequency-based probability of term ti ∈ T, i = 1, …,n.
The fuzzy probability P(Ãj) of a fuzzy set Ãj = {(ti, μj(ti)) | ti ∈ T, i =
1,…,n} in T is defined as (Zimmerman 1996)

P(Ãj) =
=

⋅
n

i
iij tpt

1
)()(μ .

(9.22)

We now show that fuzzy probability is a measure in our framework of
documents and queries.

Theorem 9.4. Fuzzy probability P is a fuzzy Jordan measure on the fuzzy
algebra T.

 Proof. Obviously, P(Ãj) is nonnegative for any fuzzy set. The fuzzy
probability of the empty fuzzy set is equal to zero. This is immediately

P({(ti, 0) | ∀ti ∈ T})
=

⋅=
n

i
itp

1
)(0 = 0.

Further, the fuzzy probability of two disjoint fuzzy sets is equal to the sum
of their fuzzy probabilities. We have

Ãi Ãj = {(t, μ(t)) |t ∈ T, μ(t) = μi(t)μj(t)} = o ⇔ μi(t)μj(t) = 0.

Hence,
P(Ãi Ãj) =

9.8 Fuzzy Algebra-Based Retrieval Methods 205

= P[{(t, μ(t)) | t ∈ T, μ(t) = μi(t) + μj(t) − μi(t)μj(t)}] =

= P[{(t, μ(t)) | t ∈ T, μ(t) = μi(t) + μj(t)}] =

=
=

+
n

i
iijii tptt

1
)())()((μμ =

= =

=+
n

i

n

i
iijiii tpttpt

1 1
)()()()(μμ

P(Ãi) + P(Ãj).

 In the language model (Ponte and Croft 1998), the conditional probabil-
ity P(Q|D) of a document D generating a query Q is considered and used
as a similarity measure σ:

σ =
)(

)()|(
DP

DQPDQP ∩= .

(9.23)

 There are several ways to fuzzify (or relax) Eq. (9.23)⎯as a starting
point⎯depending on how set intersection is defined and on what measures
are used in the numerator and denominator. We consider a form in which
the numerator is the fuzzy cardinality of the fuzzy intersection (based on
an algebraic product) between query Q and document D (both viewed as
fuzzy sets), whereas the denominator is the fuzzy probability of a docu-
ment as a fuzzy set:

=

=

⋅

⋅
= n

i
iij

n

i
iji

tpw

wq

1

1

)(
σ .

(9.24)

 The following retrieval method may now be formulated:

Fuzzy-Probability-Based Retrieval Method
1. Given terms T = {t1,…,tn} and documents Dj, j = 1,…,m.

2. Let TDn×m = (fij)n×m denote the term-document frequency matrix,
where fij is the number of occurrences of term ti in document Dj.

3. The frequency-based probability p(ti) of any term ti may be calcu-
lated as follows:

= =

== n

i

m

j ij

n

i ij
i

f

f
tp

1 1

1)(.

206 9 Fuzzy Algebra-Based Retrieval

4. Let Wn×m = (wij)n×m denote a term-document weight matrix, where
wij is the weight of term ti in document Dj.

5. Given a query Q. The query weights are q1,…,qi,…,qn, where qi
denotes the weight of term ti in Q.

6. The similarity σj between a document Dj and query Q is as follows:

=

=

⋅

⋅
= n

i
iij

n

i
iji

tpw

wq

1

1

)(
σ .

9.8.4 Experimental Results

Experiments were performed to estimate the relevance effectiveness of the
following retrieval methods:

• Fuzzy entropy method.
• Fuzzy probability method.

 The standard test collections ADI, MED, TIME, and CRAN were used.
These collections were subjected to the usual Porter stemming and stoplist-
ing (using computer programs written in the C++ language). Table 9.1
lists the statistics for these test collections.

Table 9.1. Statistics of the Test Collections Used in Experiments

 For each test collection, the normalized term frequency weighting
scheme was used. The classical VSR method (i.e., in an orthonormal basis)
was also implemented and used as a baseline. All three retrieval methods
as well as the evaluation of retrieval effectiveness were performed using
computer programs written in MathCAD. The standard 11-point precision-
recall values were computed for all the test collections and for all docu-
ments and queries. Table 9.2 shows the mean average precision values.

Test
collection.

Number of.
documents
(d)

Number
of.
queries
(q)

Number
of.
terms
(t)

Avg.
number
(t/d)

Std.
dev
(t/d)

Avg.
number.
(t/q)

Std.
dev
(t/q)

ADI 82 35 791 21 7 6 2
MED 1033 30 7744 45 20 9 5
TIME 423 83 13479 193 140 8 3
CRAN 1402 225 4009 49 21 8 3

9.9 Discussion 207

Table 9.2. Mean Average Precision Obtained on Standard Test Collections
(E: entropy method; H: probability method;

VSM: traditional vector space method, used as baseline)

Test
Collection

VSM

E

E
over
VSM

H

H
over
VSM

ADI 0.33 0.33 0 % 0.35 +6 %
MED 0.44 0.48 +9 % 0.50 +14 %
TIME 0.52 0.56 +8 % 0.58 +12 %
CRAN 0.18 0.20 +11 % 0.20 +11 %
 Avg. =

+7%
 Avg. =

+11%

 Table 9.3 compares the results obtained in experiments with those ob-
tained by Deerwester et al. (1990) using LSI with normalized term fre-
quency.

Table 9.3. Comparison of Retrieval Effectiveness
Obtained with the Methods E, H, and LSI (Baseline)

Test
collection

LSI

E
over
LSI

H
over LSI

ADI 0.30 +10 % +17 %
MED 0.48 0 % +4 %
TIME 0.32 +75 % +81 %
CRAN 0.25 −25 % −25 %
 Avg =+15 % Avg = +19 %

9.9 Discussion

9.9.1 More on Measures

 A measure is monotonic, i.e., if A ⊆ B, and A, B and B \ A belong to
the algebra, then A ∩ (B \ A) = ∅, and so (A ∪ (B \ A) = (B) = (A) +

Some authors (Doob 1994) define the notion of fuzzy measure as an ana-
logue of the notion of measure over a σ-algebra (Borel field), which is
completely additive, i.e., closed under countable unions [condition (b) of
Definition 9.2 holds for countable⎯even infinitely countable⎯many sets).
In this sense, T is completely additive with respect to standard union, but it
is not, in general, completely additive with respect to algebraic product un-
ion (because the series

∞

=1
)(

j j tμ does not necessarily converge).

208 9 Fuzzy Algebra-Based Retrieval

 (B \ A), from which it follows that (A) ≤ (B). Hence, the
monotonicity property of a measure follows from the additivity property.
Typically, a fuzzy measure is defined as a monotonic function with respect
to fuzzy inclusion [i.e., from Ãi Ãj it follows that m (Ãi) ≤ m (Ãj)], with-
out requiring that it also be additive (monotonicity does not necessarily
imply additivity). The reason for requiring monotonicity rather than addi-
tivity can be illustrated by a simple example: the degree to which a house
is/looks white is not the mere sum of the color of its entrance, windows,
walls, and roof. We note that there are several types of measures used in
the theory of fuzzy sets, e.g., the Sugeno measure, the Klement measure,
the belief measure, the possibility measure, and the necessity measure
(Zimmerman 1996, Wang and Klir 1991).
 In this book, the notion of the Jordan measure (which is finitely addi-
tive) and its fuzzy counterpart are being used, rather than the notions of
measure that are infinitely additive and fuzzy measure that is monotonic.
The monotonicity of a Jordan fuzzy measure is debatable. If, e.g., the dif-
ference Ã2 \ Ã1, where Ã1 Ã2, is defined as μ2(x) − μ1(x), then the intersec-
tion Ã1 (Ã2 \ Ã1) ≠ o (as one would normally expect). Thus, just as a Jordan
measure is not a measure (in the modern and widely accepted mathemati-
cal sense today), the Jordan fuzzy measure is not a fuzzy measure (in the
usual and widely accepted sense). Despite these concerns and mathemati-
cally arguable aspects, the validity of the use of such a concept of measure
in this book is supported by the very good experimental results obtained
with retrieval methods that are based on it.

9.9.2 More on Algebra, Entropy, and Probability

 T is a fuzzy algebra also with respect to standard fuzzy union. In this
book, we are using algebraic union instead of standard union, owing to the
fact that similarity functions are based on the sum of products rather than
maxima or minima.
 Relative to Theorem 9.3, one may object that condition H(o) = 0 only
holds in the limit rather than exactly (the logarithm is not defined at point
0). This is obviously true. However, two reasons for accepting the theo-
rem, at least in principle, can be formulated. One is that the falsity of the
condition H(o) = 0 only means that H is not a continuous function at point
0, but this does not invalidate the behavior or tendency toward zero of H,
which may be accepted from a practical point of view in retrieval (the
closer the value of the membership function to zero, the closer the entropy

9.9 Discussion 209

to zero). The other reason is that good experimental results (relevance ef-
fectiveness) were obtained using fuzzy entropy as similarity.
 Fuzzy probability can, of course, be used as a similarity function on its
own, but the experimental results as to its relevance effectiveness are
weak. This is the reason that it is not used directly as similarity; rather it is
used to build a better similarity function on it. The case in which the nu-
merator in Eq. (9.24) is also a fuzzy probability was also tested, but rele-
vance effectiveness was low. Further, the basic equation for the similarity
function used in the probability retrieval model, i.e., P(D|Q) = P(D∩Q) /
P(Q), was also fuzzified and tested. The results were also weak. Equation
(9.24) gave the best results, which is why we propose only this version
here.

9.9.3 Information Retrieval and Integration Theory

This section is based on Dominich and Kiezer (2007) and is basically in-
tended as a preparation Section 9.9.4. The notion of a definite integral can
be defined in a general way using the concepts of σ-algebra, measure μ on
it, and a simple function s. A simple function s on a set X is defined as

s: X → {a1,…,an} ⊂ [0;). (9.25)

Function s can also be written as

s(x) =
=

n

i Ai i
a

1
χ , (9.26)

where Ai = {x ∈ X| s(x) = ai} and
iAχ = 1 if x ∈ Ai, while

iAχ = 0 if x ∉ Ai.
Now let E be an element of a σ-algebra. Then, the integral of function s
over E is defined as

=
∩=

E

n

i ii EAasd
1

)(μμ . (9.27)

 In a retrieval system, the retrieved documents Di in response to a query
Q are presented to the user rank ordered, i.e., sorted descendingly on their
relevance score based on the values of a similarity function (as some
measure): μ(oi ∩ q). In other words, there is a ranking function (method,
procedure) r that rank orders documents D1,…,Di,…,Dn. Each document
receives its own rank, which is different from any other rank. The ranking
function r means computing relevance scores and then sorting documents
in descending order according to their relevance scores. In procedural
terms, the ranking function r can be expressed in pseudocode as follows:

210 9 Fuzzy Algebra-Based Retrieval

 r()

FOR i = 1 TO n compute similarity μ(oi∩q)
SORT descendingly (D1,…,Dn)
FOR i = 1 TO n PRINT(i, Di).

 Formally, ranking function r maps each document to the set of positive
integers {1, 2,…,n}, i.e., r: O → {1, 2,…,n}. Thus, function r may be con-
ceived as being a simple function. It is then possible to construct the sum

R =
=

∩n

i ii QDDr
1

)()(μ . (9.28)

Sum R may be referred to as the integral of the ranking function r over
query Q, i.e.,

R =
=

∩n

i ii QDDr
1

)()(μ =
Q

rdμ .

(9.29)

In terms of integration theory, a retrieval system is computing the integral
of its own ranking function r over query Q.
 Dominich and Kiezer (2007) give an example from the ADI test collec-
tion for the first query: Q1 (using normalized frequency weights, dot prod-
uct similarity measure). The first five elements of the ranked hit list are the
documents with numbers 69, 47, 17, 46, 71 (the corresponding similarity
values are 0.186, 0.16, 0.158, 0.155, 0.126). Thus, R = 1.726.
 As any automatic retrieval system is completely defined by giving the
documents, the query, and the retrieval algorithm (including ranking), the
retrieval system is completely defined by giving its integral:

Q
rd μ . (9.30)

Different retrieval methods are obtained (e.g., vector space, fuzzy entropy,
fuzzy probability) depending on how measure μ is defined (κ, H, P, re-
spectively).

9.9.4 Principle of Invariance and String Theory

This section is designed, above all, to be thought provoking.
String theory1 is a formal construct in theoretical physics designed to

unifying quantum theory and general relativity. It is based on replacing the

1 B. Schellekens: Introduction to String Theory. http://www.nikhef.nl/~t58/lectures.html (4 Nov 2007).

9.9 Discussion 211

basic principle of pointlike particles, which underlies our intuition for
quantum theory and general relativity, with the assumption that the ele-
mentary building blocks of the universe are not particles but strings, which
are conceived as tiny line segments (“strings,” “pieces of rope”) of energy.
There is no elementary constituent smaller than strings. Strings can be at
most 10−15 meters in length; otherwise they could be seen in particle accel-
erators. But just because they are so small, they look like points.

When strings move in (Minkowski) space-time they sweep out surfaces
(ribbons or cylinders). Such a surface S can be described by choosing a
time coordinate (parameter) on it. The evolution in time (motion, excita-
tion) of a string from its initial to its final state is given mathematically by
a surface integral with the general form

S
LdS , (9.31)

where L denotes the Lagrangian (expressing kinetic and potential energy,
which is usually taken to be L = −T; T denotes string tension). Strings may
have many excitation modes that look like particles and are perceived as
particles. On the other hand, the principle of invariance (Section 9.5) pro-
poses that entities can change their identities: they may actually be con-
ceived as being different from different points of view. This suggests the
following parallel between information retrieval and string theory:

String theory Information retrieval

String Document
Excitation modes

(perceived as particles)
Identities (perceived as meanings, information,

representations)
Mathematical description of evolution (in time):

S
LdS

Mathematical description of evolution (in rele-
vance):

Q

rd μ

 If the parallel given above is indeed possible or acceptable, then we may
ask whether there is any basic principle or concept according to which
identities are what we normally call the meaning or information content or
representation of documents. It may be that what we normally call a
document is/should be a counterpart of a string, as an abstract notion. A
further option for a counterpart of the notion of a string would perhaps be
the abstract concept of “infon” as a basic building block of information as
a further physical notion next to energy or mass.

212 9 Fuzzy Algebra-Based Retrieval

9.10 Exercises and Problems

1. Write down the details of the proof that the scalar product <u, v> of
the vectors u and v in the general basis gi is equal to (ui)Tgijvj.

2. Given the following term-document matrix (whose columns represent
the coordinates of documents in the orthonormal basis of space E4):

W =

1110
0102
0711
5032

,

write the term-document matrix in the following orthogonal basis:

.

2
0
0
0

,

0
3
0
0

,

0
0
1
0

,

0
0
0
2

−

3. Compute the scalar product between the documents of Exercise 2 in
both the orthonormal basis and the orthogonal basis.

4. Given the fuzzy sets Ã1 = “real numbers close to 10” = {(x, μ1(x)) | x
∈ X}, where

μ1(x) =
2)10(1

1
−+ x

,

and Ã2 = “real numbers much larger than 10” = {(x, μ2(x)) | x ∈ X},
where

μ2(x) =

2)10(
11

1

−
+

x

,

calculate the standard and algebraic product fuzzy union and fuzzy
intersection of Ã1 and Ã2.

9.10 Exercises and Problems 213

5. Implement the VSR algorithm on a standard test collection and meas-
ure its relevance effectiveness.

6. Implement the fuzzy entropy retrieval method on a collection of your
choice and measure its relevance effectiveness.

7. Implement the fuzzy probability retrieval method on a collection of
your choice, and measure its relevance effectiveness.

8. Given the matrix

A

1

0

1

1

0

4

1

1

3

2

0

0

5

2

1

0

:=

’

use the canonical form to compute A3.

9. Give other ways to compute the probability p(ti) in the fuzzy prob-
ability retrieval method. Measure the relevance effectiveness of your
method.

10 Probabilistic Retrieval

The logic of the world is comprised in computing probabilities.
(James Clerk Maxwell)

After reviewing the necessary notions and results from probability theory
(probability measure, event space, relative frequency, independent events,
conditional probability, Bayes’s theorem), probabilistic retrieval methods
are presented (probability ranking principle, Bayes’s decision rule, nonbi-
nary method, language model) together with examples.

After discussing various formal frameworks for probabilistic retrieval,
we propose a framework using lattices (distributive lattice of logical impli-
cations).

The notion of a Bayesian network is defined as a special kind of dis-
tributive lattice, and the inference retrieval method is described as an ap-
plication of Bayesian networks.

Exercises and problems are provided to enhance understanding of the
concepts as well as the application possibilities of the different methods.

216 10 Probabilistic Retrieval

10.1 Elements of Probability Theory

The notion of probability is usually related to the intuition of chance or de-
gree of uncertainty, which develops at a relatively early age. However, a
precise and formal definition of probability, universally accepted, seems to
be a delusion.
 A widely accepted mathematical definition of the notion of probability
is the following. Let ℑ = ℘(Ω) denote a Boolean algebra (i.e., a comple-
mented and distributive lattice), and let its elements be called events. A
probability measure (in short, probability) P is defined as (Kolmogorov
1956):

• P: ℑ → [0, 1] ⊂ .
• P(Ω) = 1.
• A ∩ B = ∅ P(A ∪ B) = P(A) + P(B) A, B ∈ ℑ.

 The triple (Ω, ℑ, P) is referred to as an event space (Kurtz 1991). In
practice, the probability of an event is computed based on frequencies
(number of occurrences). Let us assume that a trial has n possible equally
likely outcomes. If any one of r outcomes produces an event E, the relative
frequency frel(E) of E is calculated as frel(E) = r/n.
 In probability theory, it is demonstrated that the following relationship
between the probability P(E) of an event E and its relative frequency frel(E)
holds:

+∞→n
lim frel (E) = P(E). (10.1)

In other words, relationship (10.1) makes it possible to interpret probabil-
ity as being the relative frequency in the long run. A consequence of Eq.
(10.1) is that, in practice, the probability of an event can be established
empirically by performing a large number of trials and equating relative
frequency with probability.

Example 10.1

What is the probability that when tossing a die, the outcome is odd and
greater than 2? If the die is fair (i.e., all sides are equiprobable), this event
is satisfied by two (r = 2) of the six possible outcomes (n = 6), namely 3
and 5. Therefore, the probability that this event will occur is equal to
2/6 = 1/3.
 We note that there are other ways to compute the probability of an event
(equivalently, the degree of uncertainty we associate with it). Thus, in the
so-called frequentist view, the probability of an event is the proportion of

10.1 Elements of Probability Theory 217

times we would expect the event to occur if the experiment were repeated
many times. In the subjectivist view, the probability of an event is one’s
degree of belief in the occurrence of that event.
 Two events A and B are said to be independent if

P(A ∩ B) = P(A) × P(B). (10.2)

In words, two trials are said to be independent if the outcome of one trial
does not influence the outcome of the other.

Example 10.2

Tossing a die twice means two independent trials. The outcomes of two
flips of a fair coin are independent events.

 Two events that have no outcomes in common are called mutually ex-
clusive (i.e., it is impossible for both to occur in the same experiment). For
example, in die tossing, the events “I toss a 2” and “I toss a 1” are mutu-
ally exclusive.
 The union of two events means that, in a trial, at least one of them oc-
curs. It is an interesting result that for any two events, say, A and B, we
have P(A ∪ B) = P(A) + P(B) − P(A ∩ B). Then, if A and B are mutually
exclusive, P(A ∪ B) = P(A) + P(B).
 Let P(A) > 0. Then, the quantity denoted by P(B|A) and defined as

P(B|A) =
)(
)(

AP
ABP

(10.3)

is called the conditional probability of event B relative to event A. Alterna-
tively, assume that there are two trials, the second dependent on the first. The
probability P(AB) = P(A ∩ B) that the first trial will yield an event A and the
second trial will yield an event B (which thus is dependent on A) is the product
of their respective probabilities, where the probability P(B|A) of B is calculated
on the premise that A has occurred [the probability of A is P(A)]:

P(AB) = P(A) × P(B|A) (10.4)

 We note briefly that, fairly counterintuitively, the notion of dependence
(independence) is not transitive. Transitivity of events would mean that if
event A depends on event B, and event B depends on event C, then event A
depends on event C.
 Let A1, A2,..., An be a mutually disjoint and complete system of events,
i.e.,

A1 ∪ A2 ∪ ... ∪ An = ℑ, Ai ∩ Aj = ∅, i, j = 1, 2,...,n, i ≠ j, (10.5)

218 10 Probabilistic Retrieval

and B an arbitrary event. If event B occurs under any Ai with probability
P(B|Ai), then the probability P(B) of event B is given by the total probabil-
ity equation:

P(B) = P(B|A1)P(A1) + … + P(B|An)P(An). (10.6)

The conditional (posterior) probability P(Ai|B), given that event B has
happened is calculated using Bayes’s theorem (or Bayes’s equation):

P(Ai|B) =

=

n

i
ii

ii

APABP

APABP

1
)()|(

)()|(
,

(10.7)

where P(Ai) is called the prior probability.

10.2 Principles of Probabilistic Retrieval

Probabilistic retrieval is based on whether a probability of relevance (rela-
tive to a query) of a document is higher than that of irrelevance (and ex-
ceeds a threshold value).
 Maron and Kuhns (1960) argued that since a retrieval system cannot
predict with certainty which document is relevant, we should deal with
probabilities. The relevance of a term to a document was defined as the
probability of user satisfaction if that term would be used as a query. Rele-
vance was taken as a dichotomous variable, i.e., the user either is satisfied
or is not satisfied with a retrieved document. Then, it seems obvious that
documents that are most likely to satisfy the information need should be
presented first. This has become known as the probability ranking princi-
ple (Cooper 1971, Robertson 1977):

If the retrieved documents (in response to a query) are ranked de-
creasingly on their probability of relevance, then the effectiveness of
the retrieval system will be the best that is obtainable.

Note: However, counterexamples can be given (Robertson 1977).

 Indeed, the probability ranking principle yields an optimal solution un-
der certain conditions. Let A and B denote two events. By Bayes’s theorem
(10.7), we have P(A|B)P(B) = P(B|A)P(A), and P(¬A|B)P(B) =
P(B|¬A)P(¬A). Thus, where ¬A is the negated event A, we obtain

)()|(
)()|(

)|(
)|(

APABP
APABP

BAP
BAP

¬¬
=

¬
. (10.8)

10.2 Principles of Probabilistic Retrieval 219

Using the logit logistic (log-odds) transformation, defined as (Robertson
1977):

logit P(X) =
)(

)(
)(1

)(log
XP

XP
XP

XP
¬

=
−

,

(10.9)

yields

logit P(A|B) =
)|(

)|(log
ABP

ABP
¬

 + logit P(A). (10.10)

Let us define the following probabilities:

P(document retrieved | document relevant),
P(document retrieved | document irrelevant),
P(document relevant | document retrieved).

Let A = “document relevant,” and B = “document retrieved.” As seen in
Chapter 4, recall is a measure of relevance effectiveness. It is defined as
the proportion of retrieved documents out of those relevant. Thus, we may
view recall as an estimate of P(B|A). Using Eq. (10.10), we obtain

P(B|A) = P(B|¬A) × exp(logit P(A|B) − logit P(A)), (10.11)

from which it follows that recall is monotonic with respect to P(A|B),
which is the probability of relevance of a retrieved document.
 Now let:

• D be a set of documents.
• Q be a query.
• α ∈ a cut-off value.
• P(R|(Q, d)) and P(I|(Q, d)) the probabilities that document d ∈ D is

relevant (R) and irrelevant (I), respectively, to query Q.

The retrieved documents in response to query Q belong to the set ℜ(Q) de-
fined as (van Rijsbergen 1979):

ℜ(Q) = {d | P(R|(Q, d)) ≥ P(I|(Q, d)), P(R|(Q, d)) > α}. (10.12)

The elements of set ℜ(Q) are shown to the user ranked in descending order
on their P(R|(Q, d)) values (on the basis of the probability ranking princi-
ple). The inequality

P(R|(Q, d)) ≥ P(I|(Q, d)) (10.13)

is referred to as Bayes’s decision rule.

220 10 Probabilistic Retrieval

 The rest of this chapter includes a description of probabilistic retrieval
methods and a proposal for a lattice theoretical framework for probabilistic
retrieval.

10.3 Probabilistic Retrieval Method

In what follows, we describe a probabilistic retrieval method (Yu et al.
1989).
 Given a set D of elements called documents:

D = {D1,...,Di,...,Dn}, (10.14)

a set T of elements called terms:

T = {t1,...,tk,...,tm}, (10.15)

and a set Fi of nonnegative integers:

Fi = {fi1,..., fik,..., fim}, (10.16)

where fik represents the number of occurrences of term tk in document Di, a
weights vector

wi = (wi1,...,wik,....,wim), (10.17)

where wik is the weight (significance) of term tk in document Di, is calcu-
lated as follows:

)|(
)|(log

IfP
RfPw

ik

ik
ik = ,

(10.18)

where P(fik | R) and P(fik | I) denote the probability that a relevant or irrele-
vant, respectively, document Di has fik occurrences of term tk.

P(R|Di) =
)(

)()|(

i

i

DP
RPRDP

 and P(I|Di) =
)(

)()|(

i

i

DP
IPIDP

. (10.19)

Q is to be understood next to D, or simultaneous with D. However, it may
be omitted as it is a constant (during its own retrieval).

 It is assumed that (optimal retrieval hypothesis) an optimal way to re-
trieve documents is in descending order of relevance, i.e., for any two
documents Di and Dj we have P(R|Di) ≥ P(R|Dj), where P(|) denotes con-
ditional probability (i.e., that a document is relevant). By Bayes’s theorem
[Eq. (10.7)], we have

10.3 Probabilistic Retrieval Method 221

 Thus, Bayes’s decision rule [Eq. (10.13)] becomes (P(Di) ≠ 0):

 P(R|Di) ≥ P(I|Di) ⇔

 P(Di|R)P(R) ≥ P(Di|I)P(I) ⇔

)(
)(

)|(
)|(

RP
IP

IDP
RDP

i

i ≥ .

P(R) and P(I) denote the probability that a randomly chosen document is
relevant and irrelevant, respectively. They may be viewed as being con-
stant for a given collection D of documents. By making use of the term in-
dependence assumption (i.e., any term in a document occurs independently
of every other term), event Di|R means the simultaneous occurrence of the
independent events fik|R for every term in Di. Thus, we may write that

∏=
=

m

k
iki RfPRDP

1
)|()|(. (10.20)

In a similar way, we have

∏=
=

m

k
iki IfPIDP

1
)|()|(. (10.21)

Thus, Bayes’s decision rule becomes:

)(
)(

)|(
)|(

RP
IP

IDP
RDP

i

i ≥ ⇔

 c
RP
IP

IfP

RfP
m

k
ik

m

k
ik

=≥
∏

∏

=

=

)(
)(

)|(

)|(

1

1 ⇔

 c
IfP
RfPm

k
ik

ik ≥∏
=1)|(

)|(
.

If we take the logarithm of both sides and use Eq. (10.18), we get

Ccw
m

k
ik =≥

=
log

1
. (10.22)

222 10 Probabilistic Retrieval

Hence, the optimal retrieval hypothesis can be rewritten as

P(R|Di) ≥ P(R|Dj) ⇔ ≥
==

m

k
jk

m

k
ik ww

11
. (10.23)

 Let Q = (q1,…,qk,…,qm) denote a query (qk are binary weights), i.e., qk =
1 if tk occurs in Q, and qk = 0 otherwise. Using the dot product similarity
measure, we find that the similarity σi between query Q and document Di
is equal to

σi = =
==

m

k
ik

m

k
kik wqw

11
, (10.24)

which means that the optimal retrieval hypothesis is rewritten as

P(R|Di) ≥ P(R|Dj) ⇔ ≥
==

m

k
jk

m

k
ik ww

11
 ⇔ σi ≥ σj. (10.25)

 The following method can be used to apply this model in practice:

Probabilistic Retrieval Method

1. Let q denote a query.
2. Let query q be the one-element set T [given in (10.15)], |T| = m.
3. In order for a document Di to be retrieved in response to q, the fol-

lowing condition can be used:

=

m

k
ikf

1
≥ K,

 where K is a threshold.
4. The retrieved documents are then presented to the user, who

judges which are relevant and which are not. (This action is called
relevance feedback).

5. From the retrieved and relevant documents, the following table is
constructed first for each term tk in T:

Tk = 0 1 . . . j . .
.

 b0 b1 . . . bj . .
.

where Tk is a variable associated with term tk and takes on the val-
ues 0, 1,..., j,... (which can be interpreted as the number of occur-
rences), and bj is the number of relevant and retrieved documents
having j occurrences of term tk. The probabilities P(fik|R) are calcu-
lated as:

10.3 Probabilistic Retrieval Method 223

P(fik|R) =
...10 ++ bb

bj ,

for fik = j. The same method is used for the irrelevant documents.
6. Calculate weight vectors wi for documents, assign weight 1 to

each query term, and use the optimal retrieval hypothesis to re-
trieve and rank order documents.

Note: This method gives better results if probabilities are (re-)computed
using accumulated statistics for many queries.

Example 10.3

Let the set of documents be D = {D1, D2, D3}, where:

D1 = Bayes’s principle: The principle that in estimating a parameter, one
should initially assume that each possible value has equal probability (a
uniform prior distribution).

D2 = Bayesian decision theory: A mathematical theory of decision-making
that presumes utility and probability functions, and according to which
the act to be chosen is the Bayes’s act, i.e., the one with highest subjec-
tive expected utility. If one had unlimited time and calculating power
with which to make every decision, this procedure would be the best
way to make any decision.

D3 = Bayesian epistemology: A philosophical theory that holds that the
epistemic status of a proposition (i.e., how well proven or well estab-
lished it is) is best measured by a probability and that the proper way to
revise this probability is given by Bayesian conditionalization or simi-
lar procedures. A Bayesian epistemologist would use probability to de-
fine concepts such as epistemic status, support, or explanatory power
and explore the relationships among them.

Let query q be q = probability. T = {t1 = probability}, k = 1. In order to
retrieve an initial set of documents, fi1, i = 1, 2, 3, are calculated first:

f11 = 1, f21 = 1, f31 = 3.

Taking K = 1, we retrieve documents D1, D2, and D3:

Σk f1k = 1, Σk f2k = 1, Σk f3k = 3 (≥ K).

In a relevance feedback, D3 is judged as relevant, whereas D1 and D2 are
irrelevant. The probabilities of relevance are

P(fi1=1 | R) = 0, P(fi1=3 | R) = 1,

and those of irrelevance are

224 10 Probabilistic Retrieval

P(fi1=1 | I) = 1, P(fi1=3 | I) = 0.

The weight vectors for documents are

w1 = −∞, w2 = −∞, w3 = ∞.

The query vector is wq = (1). In the new retrieved rank order, D3 precedes
D2 and D1.

10.4 Language Model Retrieval Method

Instead of computing (estimating) the conditional probability P(R|(D, Q))
of relevance R of a given document D with respect to query Q, Croft and
Ponte (1998) and Song and Croft (1999) suggested a method for estimating
the conditional probability P(Q|D) of a query Q given document D, known
as the language model of information retrieval.
 Let Q denote a query consisting of (or represented as) a sequence of
terms: t1,…,ti,…,tm. The occurrence of each term ti is conceived as being
an independent event, i.e., each term is independent of any other term
(term-independence assumption). Let P(ti|D) denote the probability of term
ti in document D. Then,

∏=
=

m

i
i DtPDQP

1
)|()|(. (10.26)

Probability P(ti|D) can be estimated as

D

iD
i N

fDtP =)|(, (10.27)

where fiD denotes the number of occurrences of term ti in document D and
ND the total number of term occurrences in D.
 It is known from practice that, in general, many terms may be missing in a
document, which means that their probabilities would be zero. If such a term
were used in Q, then probability P(ti|D) would vanish, which is not desirable
if another query term is present in D. A solution to such a situation would be
to assign some probability to missing terms as well. The method used to per-
form this assignment is referred to as smoothing. The number fiD of occur-
rences of term ti in document D is adjusted to a value f’

iD according to the
following equation (known as the Good-Turing estimate):

f ’iD =
)(
)(

)1(1

iDf

iDf

iD NE
NE

f ++ ,

(10.28)

10.4 Language Model Retrieval Method 225

where Nx is the number of terms with frequency x in D, and E(.) denotes
expected value. Then, probability P(ti|D) is defined as

D

iD
i N

fDtP ')|(= . (10.29)

Thus, the probability of a missing term will be set to E(N1) / [E(N0)ND].
Since the length and content of a document is fixed (in practice), the ex-
pected value E(Nx) is almost impossible to obtain. However, one way to
get around this problem is to estimate (or approximate) E(Nx) with Nx, al-
beit that this may create problems. For example, a term t with highest fre-
quency h will have probability zero because Nh+1 is zero. One solution is to
use curve fitting to smooth the observed frequencies to a fitted (smoothing)
function S. It is known (Chapter 4) that term occurrences follow a power

 f Nf

 0 2134
 1 34
 . . .

With a smoothing function S, probability P(ti|D) becomes

D
iDi NfS

fS
fDtP

iD

iD

)(
)1(

)1()|(
+

+= .

(10.30)

Song and Croft (1999) report that, according to experimental results, an
appropriate smoothing function was a particular geometric distribution.
The relevance effectiveness of the retrieval method thus obtained was
measured on two test databases: The Wall Street Journal and TREC4. The
MAPs (mean average precisions) obtained were 0.2198 and 0.1905, re-
spectively.
 Another smoothing method used to estimate P(ti|D) is the Jelinek-
Mercer smoothing (Metzler and Croft 2004). With this method, P(ti|D) is
approximated as

,
||

)1(
||

)|(
C
N

D
fDtP iiD

i λλ −+=

(10.31)

law. The number of occurrences f is represented on the x-axis, while the
number Nf of terms having frequencies f is on the y-axis; e.g.:

226 10 Probabilistic Retrieval

where:

• |D| is the number of terms in D.
• Ni is the number of times term ti occurs in the entire collection of docu-

ments.
• |C| is the number of terms in the entire collection of documents.
• λ is a smoothing parameter that can be set manually (experimentally or

automatically), 0 ≤ λ ≤ 1; recommended value: λ = 0.6.

10.5 Lattice Theoretical Framework
for Probabilistic Retrieval

We have seen that probabilistic retrieval methods are based on the notion
of probability quantified by P(R|(Q, d)) and P(I|(Q, d)). These quantities
are referred to as the conditional probabilities that document d is relevant
(R) and irrelevant (I), respectively, to query Q.
 Then, we can ask the following question: What is the event space over
which the probabilities are defined? Several answers have been given.
 Robertson et al. (1982) propose that the event space be generated by the
Cartesian product between a document set D and a query set Q, Q × D, i.e.,
the event space is the Boolean lattice (Q × D, ℘(Q × D), P). Relevance is
defined as a binary relation R ⊆ Q × D. Then, obviously, P(R) = 1 (since
R, as the event, is given). But how realistic is this (relevance may also be a
posteriori)?
 Fuhr (1992) takes a slightly different approach. He proposes the same
event space, i.e., (Q × D, ℘(Q × D), P). However, in his view, relevance is
not an element of this event space, but rather a real number attached a
query-document pair (q, d) as follows. The probability P(R|(q, d)) is calcu-
lated as the proportion of pairs (q, d) that are judged as relevant out of the
total number of documents and queries having the same representation d
and q, respectively. In Fuhr’s view, the set Q × D may even be infinite. In
such a case, it may happen that all representations are also infinitely many
(when they are all different from each other). How is probability calculated
in this case? On the other hand, if P(R|(q, d)) is either 0 or 1, the probabil-
ity ranking principle may become superfluous: ranking becomes meaning-
less (the relevance degree of all retrieved documents is equal to 1).
 Van Rijsbergen (1992), recognizing these difficulties, examines the no-
tion of probability in probabilistic retrieval. There are two ways to view
probability. One is to see it as a measure of chance (of an event) and the
other is as a measure of the degree of belief (in a proposition). In probabilistic

10.5 Lattice Theoretical Framework for Probabilistic Retrieval 227

retrieval, the most thoroughly researched notion was conditional probabil-
ity P(R|(q, d)) within the Bayesian framework. As this probability may
leave room for confusion, the question of whether P(R|(q, d)) designates a
conditional probability or a degree of implication (of the type q implies d)
may be raised. In order to get around such problems, van Rijsbergen pro-
poses the application of Jeffrey’s rule of conditioning. Let X be an event,
and let E denote a proposition that signifies the “passage of experience.”
Then, P(X) is the probability (measure of the degree of belief) of X before
observation (i.e., before the “passage of experience”). The passage of ex-
perience (represented by E) leads P to a revised P*. In Bayesian notation:
P*(X) = P(X|E). To give an example: one believes that a piece of cloth is
green to the degree of P(X) = 0.3; but, after examining it by candlelight,
one modifies one’s belief as follows: the piece of cloth is blue to the de-
gree P*(X) = 0.7. Van Rijsbergen developed a mathematical formalism
that implements Jeffrey’s rule of conditioning in IR. With the notation X =
relevance, and E is the observation of a query term in a document, the fol-
lowing formula for relevance is proposed:

P*(relevance) =

P(relevance | term occurs)P*(term occurs) +

P(relevance | term does not occur)P*(term does not occur).

 Robertson (2002) discusses at length the problems that may arise when
the event space is (Q × D, ℘(Q×D)). Apart from those already mentioned
thus far, another major problem that can be raised in the context of IR: In
this event space, every event is distinct and every query is paired with
every document. How adequate is this in retrieval? Robertson proposes the
following solution. For the probabilistic model, the event space is based on
a single query, the actual one, paired with documents (i.e., the event space
is regenerated with every query).
 We now propose a formal framework for probabilistic retrieval based on
the distributive lattice of logical propositions ordered by logical implica-
tion.
 Let {d1,...,dj,...,dm} denote a set of documents to be searched in response
to a query Q. Let us introduce the function

f: {d1,...,dj,...,dm, Q, R, I} → ({T, F}, ∧, ∨, ¬), (10.32)

where ({T, F}, ∧, ∨, ¬) is the Boolean algebra of logical propositions, and

 dj |→ “Document dj is observed,” j = 1,…,m.
 Q |→ “Query Q is given.”

228 10 Probabilistic Retrieval

 R |→ “Document is relevant.”
 I |→ “Document is irrelevant.”

 The degree of ordering in a lattice can be measured as follows:

Definition 10.1 (Knuth 2005). In a Boolean lattice, the degree of ordering
is measured by the function

<<
=∧

≥
=

10
0
1

),(
potherwisep
yxif

yxif
yxz 0

 We use the following result (whose proof is only sketched here, as for
us it is the result itself that is important rather than its proof):

Theorem 10.1 (Knuth 2005). In a distributive lattice L, the measure z of
the degree of ordering satisfies the relation

),(
),(),(),(

txz
tyxztyztxyz ∧=∧ .

 Proof. Since lattice L is distributive, we have

z(x ∧ y, t) = z(x, t) ⋅ z(y, x ∧ t).

Owing to commutativity, we may rewrite the above as

z(y ∧ x, t) = z(y, t) ⋅ z(x, y ∧ t).

The left-hand sides are equal, so the right-hand sides are equal to each
other as well:

z(x, t) ⋅ z(y, x ∧ t) = z(y, t) ⋅ z(x, y ∧ t),

which yields

),(
),(),(),(

txz
tyxztyztxyz ∧⋅=∧ .

 Obviously, Theorem 10.1 also holds for Boolean algebras (because any
Boolean algebra is a distributive lattice).
 The relationship in Theorem 10.1 reminds us of Bayes’s theorem from
probability theory. It can be similarly shown (Knuth 2005) that the sum
and product rules of probability also hold for function z. (Moreover, these
rules are the only ones that are consistent with lattice L.

10.5 Lattice Theoretical Framework for Probabilistic Retrieval 229

 As we saw earlier, the lattice of propositions can be ordered using logical
implication and thus transformed into a distributive lattice (moreover, even
into a Boolean algebra). Logical implication in mathematical logic is usually
referred to as material conditional. Recall that this type of conditional may
create paradoxes or strange situations. For example, a contradiction (which
is always false) may imply anything (i.e., falsity as well as truth). Or, if the
consequent is true, then the value of the material conditional is also true re-
gardless of the truth-value of the antecedent. (In p q, p is the antecedent
and q is the consequent; p q is also denoted by p → q.)
 Another strange situation is that the material conditional allows us to
link any propositions that might not even be used together in normal
speech (see examples in Chapter 2). Conditionals that allow only proposi-
tions that bear on the same subject are called entailments.
 There are other types of conditionals as well. Thus, the counterfactual
(or subjective) conditional has the form “if p were to happen, then q
would.” The counterfactual conditional is typically used in science, e.g.,
“if ice were to be heated, it would melt,’ or “if the equipment were to fail,
then the lamp would flash.” It can be seen that, in general, counterfactual
conditionals cannot be represented by material conditionals. (Since the ma-
terial conditional p → q is true whenever p is false, the value of the coun-
terfactual would be indistinguishable.)
 Another type of conditional is the indicative conditional. An example of
an indicative conditional is, “if the accused did not kill the victim, then
someone else did,” which is true. But the falsity or truth of its counterfac-
tual version, “if the accused had not killed the victim, someone else would
have,” is questionable.
 Reasoning or inference (i.e., the process of deriving conclusions from
premises known or assumed to be true) is based, among others things, on
the use of conditionals.
 In deductive reasoning, if the premises are true, then the conclusion
must be true. Examples for deductive reasoning are:

• The law of noncontradiction (if p is true, then p cannot be false).

• Modus ponens (if p → q and p, then q).

False or inconclusive premises may lead to false or inconclusive conclu-
sions.
 In another type of reasoning—inductive reasoning—true premises are
believed to support the conclusion, albeit that they do not necessarily en-
sure it. Inductive reasoning is typically used to formulate laws or rules
based on limited or uncertain observations or experiments. For example,

230 10 Probabilistic Retrieval

from “this fire is hot,” one infers that “all fires are hot” (which is not nec-
essarily true, since there is also cold fire).
 We can thus see that inductive reasoning has a probabilistic (uncertain,
belief-based, plausibility) flavor. Inductive reasoning may thus be inter-
preted as being a material conditional that has a degree of being true at-
tached to it. As Stalnaker (1968) conjectured, and recent experimental re-
search has supported, (Over et al. 2007), the probability of the conditional
p → q is proportional to the conditional probability P(q|p) of the conse-
quent on the antecedent. Implication induces an order in the lattice of
propositions. Thus, the following definition may be introduced:

Definition 10.2. (Knuth 2005) The conditional probability of y given x is
denoted by P(y | x) and defined as

z(x, y) = P(x | y).

 We are now formally entitled to write, in probabilistic retrieval, the
probability P(R | (Q, d)), which is now equal to P(R | Q ∧ d), and is thus
consistent with its formal background. The usual expression (10.19) can
now be written as (Theorem 10.1):

P(R | (d, Q)) = P(R | d ∧ Q) =
)|(

)|()|(
QdP

QRdPQRP ∧
,

(10.33)

which is the same as Eq. (10.19); Q is constant, so it may be omitted.

Note: At a first look, the derivations in this section may seem strange. We
wish to remind the reader that the notion of probability, as defined by
Kolmogoroff, is a formal concept: it is a measure on a lattice structure (to
be exact, on a σ-algebra). As such, it is consistent with the operations on
this lattice, namely the sum, product, and Bayes’s rules are satisfied. We
have seen that these rules are satisfied by the degree function z defined on
a distributive lattice L. Thus, formally, the two concepts, probability and
degree function z, are equivalent. Moreover, it is just this equivalence that
may elucidate why some measures in science act like probabilities when
they are hardly what one would consciously and explicitly call probability
(as chance). Yet, this seems to be exactly the case with the quantities P in
probabilistic retrieval methods.

10.6 Bayesian Network Retrieval 231

10.6 Bayesian Network Retrieval

Let us consider the lattice (P,) of logical implications. Based on Defini-
tions 10.1 and 10.2, a conditional probability P(x|y) may be assigned to the
elements of P.
 The notion of a Bayesian network (or inference network) can be defined
as a lattice of implications in which the degree function z is given in a very
specific way:

Definition 10.3. A Bayesian network is a lattice (P,) in which the con-
ditional probabilities P(x|y) are given as the probability of event x on its
supremal events y.

 Usually, a Bayesian network (BN) is defined as follows (Savoy and
Desbois 1991, Metzler and Croft 2004): The BN is a directed and acyclic
graph (tree if one disregards direction) whose nodes represent events and
edges dependence between events. Each nonroot node is assigned condi-
tional probabilities that give the probability of an outcome depending on
the outcome of its parent (antecedent) events.

We note that the 0 and 1 of the lattice (P,) are, in many cases, formal
elements that do not have a practical role in applications. However, this
does not invalidate Definition 10.3 from a formal point of view.

Given any observed event, referred to as evidence, in a BN, it is possible
to compute the probability, referred to as belief, of an outcome at any node
by propagating beliefs through the BN. Since our scope is not a treatment
of BNs per se, but rather to show how BNs can be applied in IR, the inter-
ested reader is directed to the specialized literature (e.g., Pearl 1988, Coo-
per 1990). However, a brief example is given below to help clarify the
meaning and use of a BN, in general.

Example 10.4

Let the lattice (P,), i.e., Bayesian network, be defined as follows. The
degree functions, i.e., probabilities, are (recall that T = true, F = false):

• P(Sunny = T) = 0.5, P(Sunny = F) = 0.5.
• P(Warm = F | Sunny = F) = 0.8, P(Warm = F | Sunny = T) = 0.2.
• P(Warm = T | Sunny = F) = 0.2, P(Warm = T | Sunny = T) = 0.8.
• P(Heating = F | Sunny = F) = 0.5, P(Heating = F | Sunny = T) = 0.8.
• P(Heating = T | Sunny = F) = 0.5, P(Heating = T | Sunny = T) = 0.1.
• P(I am warm = F | Heating = F ∧ Warm = F) = 1.
• P(I am warm = T | Heating = F ∧ Warm = F) = 0.
• P(I am warm = F | Heating = T ∧ Warm = F) = 0.1.

232 10 Probabilistic Retrieval

• P(I am warm = T | Heating = T ∧ Warm = F) = 0.9.
• P(I am warm = F | Heating = F ∧ Warm = T) = 0.1.
• P(I am warm = T | Heating = F ∧ Warm = T) = 0.9.
• P(I am warm = F | Heating = T ∧ Warm = T) = 0.01.
• P(I am warm = T | Heating = T ∧ Warm = T) = 0.99.

 We can use the BN to perform inference:

• For example, if we observe (this is the evidence) that the whether is
sunny (i.e., the event “Sunny” is true), then we hardly switch the heating
on (i.e., the probability of event “Heating” being true is very low,
namely 0.1).

• We can use the BN to infer the probability of causes of an observed
event. For example, if the evidence is that “I am warm” (i.e., “I am
warm” is true), then the possible causes as well as their probabilities can
be obtained.

 In IR, BNs are applied to represent documents and queries as well as to
propose similarity (ranking) measures (Turtle and Croft 1991, Savoy and
Desbois 1991, Metzler and Croft 2004). Figure 10.1 shows the basic BN
(as a building block) used for retrieval.
 Node Dj corresponds to document Dj. Nodes t1,…,tk,…,tm correspond to
representations of documents (typically to terms). Node Q corresponds to a
query. (We note that the BN of Fig. 10.1 can be enlarged to encompass all
the documents of a whole collection, as well as several queries. In such a
case, the lowest node will be one called I, which represents the user’s in-
formation need.)

Sunny

Heating Warm

I am warm

10.6 Bayesian Network Retrieval 233

Fig. 10.1. Basic Bayesian network for retrieval.

 The document node is binary, i.e., it either happens (i.e., it is being ob-
served) or not.

 There are several options to set the belief bel(tk) of representation nodes
tk. For example, it can be set to

• bel(tk) = wkj (as defined in Theorem 4.1., Section 4.6),

• bel(tk) = P(ti|Dj) [as defined in Eq. (10.27)],

• Okapi inverse document frequency belief score:

,
)1log(

5.0log

||
||

5.15.0
)1()(

+

+

×
++

×−+=
N

d
N

D
D

f

f
bbtbel k

j
kj

kj
k

(10.34)

where:

—b is the default belief parameter, 0 ≤ b ≤ 1, typically b = 0.6.

—fkj is the number of time term tk occurs in document Dj.

— Dj| is thelength of document Dj (typically: the number of its terms).

—N is the total number of documents in the entire collection.

—|D| is the average document length (e.g., |)|1
1=

N

j
jD

N
.

—dk is the number of documents in which tk appears.

Dj

t1 tk tm

Q

|

234 10 Probabilistic Retrieval

The choice of bel(tk) has an influence on the relevance effectiveness of re-
trieval. Metzler and Croft (2004) provide experimental evidence that the
choice bel(tk) = P(ti|Dj) as defined in Eq. (10.27) yields good results.
 The query node allows us to combine beliefs about representations.
Given an evidence, i.e., the observation of a document Dj, belief is being
propagated from Dj to Q, which yields a scoring function (used to rank
documents).
 Given a query Q = (w1, q1; …; wi, qi; …; wn, qn), where qi is a query
term and wi is the importance that we attach to it, several scoring functions
bel(Q) have been proposed and tested experimentally (see e.g., Metzler
and Croft 2004):

• Weighted sum:

=

== n

i
i

n

i
ii

w

qbelw
Qbel

1

1
)(

)(.

• Weighted AND: ∏
=

=
n

i

w
i

iqbelQbel
1

))(()(.

• Sum:
=

=
n

i
iqbel

n
Qbel

1
)(1)(.

• OR: ∏
=

−−=
n

i
iqbelQbel

1

))(1(1)(.

• AND: ∏
=

=
n

i
iqbelQbel

1

)()(.

• MAX:)(max)(
1 ini

qbelQbel
≤≤

= .

 Metzler and Croft (2004) reported experimental results as to the rele-
vance effectiveness of BN retrieval. The test databases used were TREC 4,
6, 7, and 8.1 Each query was Porter stemmed and stoplisted. The scoring
function used was the weighted sum. The average precision obtained with
the BN method was 9% higher than that obtained with the language model
on TREC 4.

1 www.nist.gov (TREC).

10.7 Exercises 235

10.7 Exercises

1. Given a blog on the World Wide Web (or a presentation on radio on
or television) that contains a section called “Frequently Asked Ques-
tions” (FAQ), note that FAQ contains the following questions (in
chronological order): q1,…,qi,…,qn. The number of times question qi
was asked is fi, i = 1,…,n. What is the probability of selecting qi?

2. Let A and B be two independent events. Prove that

logit (A ∪ B)= log(1 / (1 − P(A) − P(B)) −1).

3. Implement the probabilistic retrieval method on a document collec-
tion of your choice. In Eq. (10.18), use frequency fik first, then a
weight wik of your choice (using Theorem 4.1). Observe and discuss
the differences in the two rankings.

4. Implement the language model method on a document collection of
your choice. Define and experiment with several smoothing func-
tions. Observe and discuss the rankings.

5. Implement the inference network retrieval method on a document col-
lection of your choice. Observe and discuss the influence of different
belief functions on ranking.

11 Web Retrieval and Ranking

The significant problems we face cannot be solved at the same level of
thinking we were at when we created them.

(Albert Einstein)

After introducing the notion of a Web graph and discussing degree distri-
bution, we present the basic methods using link structure analysis (impact
factor, connectivity, mutual citation, PageRank, HITS, SALSA, associa-
tive-interaction) together with clarifying examples for each. A connection
between HITS and LSI is also shown.
 Then, an aggregated method for Web retrieval based on lattices is pre-
sented that allows one to calculate the importance of pages, taking into ac-
count both their link importance (using link analysis) and their intrinsic
importance (stemming from page content). Experimental evidence for the
relevance effectiveness of this method is also given in terms of comparison
with commercial search engines (with Google, Altavista, Yahoo!).

After introducing the notion of Web lattice and chain, we define Web
ranking as a lattice-lattice function between a Web lattice and a chain. We
show that ranking is not submodular. Then, global ranking is defined as a
lattice-lattice function (i.e., a mapping from the direct product of Web lat-
tices to the chain [0; 1]). It is shown that global ranking is not submodular.
Based on the concept of global ranking, we present a method that allows
us to compute the global importance of a Web page at Web level, taking
into account the importance of the site the page belongs to, but without the
need to consider the entire Web graph of all pages.

After proving that any tree as well as any document can be transformed
into a lattice, we show that the DocBall model and Galois (concept) lattice
representations of a document are equivalent to one another.

Based on these results as well as on the fact that the structure of any site
is a lattice, we describe a method for computing site importance.

The chapter ends with exercises and problems designed to promote a
deeper understanding of the notions introduced and the application possi-
bilities of the results obtained.

238 11 Web Retrieval and Ranking

11.1 Web Graph

Let W1,…,Wi,…,WN denote a set of Web pages. A directed link from page
Wi to page Wj is defined by the fact that the URL of page Wj occurs on
page Wi, which is expressed as Wi → Wj (see Section 4.8).
 A graph G = (V, E) is referred to as a Web graph if vertex vi ∈ V corre-
sponds to page Wi (i = 1,…,N), and a directed edge (vi, vj) ∈ E exists if
there is a link from page Wi to page Wj. Graph G can be represented, e.g.,
by an adjacency matrix M = (mij)N×N defined as (Fig 11.1)

mij =
→

otherwise
WW ji

0
1

 (11.1)

M
0 0 1 0
1 0 1 1
0 1 0 0
1 0 1 0

Fig. 11.1. A small Web graph G with four pages: 1, 2, 3, and 4. The horizontal
bars within each page symbolize URLs indicating links to other pages as shown

by the arrows. The corresponding adjacency matrix M is shown on the right.

 We note that matrix M is not symmetrical (were the graph undirected, M
would be symmetrical). Moreover, it is typically a sparse matrix. This
property is important when representing matrix M on computer storage
media (e.g., using adjacency lists) and when implementing matrix opera-
tions using programming languages.
 The number of outgoing links from page Wi is called the outdegree of
page Wi, and the number of incoming links is called the indegree of page
Wi. For example, in Fig 11.1, the outdegree of page 2 is equal to 3, while
its indegree is equal to 1.

11.1 Web Graph 239

Degree Distribution. The experimental discovery by Faloutsos et al.
(1999) that the degree distribution for Web pages (and also Internet nodes)
follows a power law with a fairly robust degree exponent was a basic
milestone toward revealing the properties of the Web graph.

Kahng et al (2002) investigated the question of why the degree expo-
nent, and especially that for indegree, exhibits a fairly robust behavior, just
above the value 2. Using a directed network model in which the number of
vertices grows geometrically with time and the number of edges evolves
according to a multiplicative process, they established the distribution of
in- and outdegrees in such networks. They arrived at the result that if the
degree of a vertex grows more rapidly than the number of edges, then the
indegree distribution is independent of the ‘details’ of the network.

We recall briefly the notion and technique of a power law (from a
slightly different point of view than that used in Chapter 4). Given a dis-
crete random variable V = V1, V2,…,Vn, if the probability P that the random
variable V assumes values equal to or greater than some value v is given by

P(V ≥ v) =
k

v
m ,

(11.2)

where m > 0, k > 0, and m and k are⎯problem-dependent⎯constants, v ≥
m, then we say that V follows Pareto’s law. For example, indivduals’ in-
comes obey Pareto’s law (Guilmi et al. 2003); m represents a minimal in-
come. It follows from Eq. (11.2) that

P(V < v) = 1 −
k

v
m ,

(11.3)

which is the distribution function F(v) of V. A function P as defined in Eq.
(11.3) for real values of v is differentiable with respect to v, and the deriva-
tive is continuous. Thus, it is absolutely continuous, and hence the random
variable V has density function f(v) given by the derivative F′, i.e., f(v) =
F′(v) = mk⋅v−(k+1). The function f(v) is referred to as a power law and is usu-
ally written in the following general form:

f(v) = C⋅v−α, (11.4)

where C is a⎯problem-dependent⎯constant, and α is referred to as the
exponent of the power law, or degree exponent. The power law can be
used to describe phenomena with frequent small events and rare large
ones (Adamic 2003). For visualization purposes, the power law is repre-
sented in a log-log plot, i.e., as a straight line obtained by taking the
logarithm of Eq. (11.4):

240 11 Web Retrieval and Ranking

log f(v) = log C − α × log v; (11.5)

log v is represented on the abscissa and log f(x) on the ordinate; −α is the
slope of the straight line and log C is its intercept.

Given a sequence of values X = (x1,...,xi,...,xn) on the abscissa and an-
other sequence of values Y = (y1,...,yi,...,yn) on the ordinate, if the correla-
tion coefficient r(X, Y) suggests a fairly strong correlation between X and Y
at a log scale, then a regression line can be drawn to exhibit a relationship
between X and Y. Using the slope and the intercept of the regression line,
we can write the corresponding power law.

Thus far, the following values for the degree exponent were obtained
experimentally:

1. Faloutsos et al. (1999), using data provided by the National Labora-
tory for Applied Networks Research between the end of 1997 and end
of 1998, arrived at the result that the tail of the frequency distribution
of outdegree⎯i.e., the number of Internet nodes and Web pages with
a given outdegree⎯is proportional to a power law. Their observation
was that the values of the exponent seemed to be almost constant:
2.15, 2.16, 2.2, 2.48.

2. Barabási et al. (2000)⎯using 325,729 HTML pages involving
1,469,680 links from the nd.edu domain⎯confirmed the earlier re-
sults obtained for the values of the degree exponent. They obtained
the values 2.45 for outdegree and 2.1 for indegree.

3. Broder et al. (2000) and Strogatz (2001) describe two experiments us-
ing two Web crawls, one in May and another one in October 1999,
provided by Altavista, involving 200 million pages and 1.5 billion
links. The results they arrived at were the same in both experiments:
the values of the degree exponent were estimated to be 2.1, 2.54,
2.09, 2.67, 2.72 for outlink distribution.

4. The values obtained earlier for the degree exponent were also con-
firmed by Pennock et al. (2002), who found⎯using 100,000 Web
pages selected at random from 1 billion URLs of Inktomi Corporation
Webmap⎯that the exponent for outdegree was 2.72 and 2.1 for inde-
gree. Similar exponent values were obtained for the indegree distribu-
tion for category-specific homepages: 2.05 for companies and newspa-
pers, 2.63 for universities, 2.66 for scientists, and 2.05 for newspapers.

5. Shiode and Batty (2000) assessed the power law for Web country
domain names in- and outlink distribution as of 1999. Their results
for the power law exponent were 2.91, 1.6, 2.98, 1.46, 2.18, 2.

11.1 Web Graph 241

6. Adamic and Huberman (2000) report on an experiment involving
260,000 sites, each representing a separate domain name. The degree
exponent was estimated to be 1.94.

7. Kumar et al. (1998) report that a copy of the 1997 Web from Alexa
(a company that archives the state of the Web) was used to estimate
the degree exponent of the power law. The data consisted of about 1
terabyte of data representing the content of over 200 million Web
pages. It was found that the degree exponent was 2.38.

8. Albert (2000) reports that the value of 2.3 was found for the degree
exponent.

9. Experiment 1. Using the Barabási data,1 the power law for outdegree
distribution was assessed (Dominich et al. 2005). The data were pro-
vided as a zipped file. After unzipping it, the result was a text file that
contained two numbers in each line: the leftmost number was the se-
quence number of Web pages (0; 1; 2;…; 325,729), and the other
number was the sequence number of the Web page pointed to by the
page represented by the leftmost number. A noteworthy observation
is that the exponent of the Web power law increases slowly from 1
with the number of pages (from a few hundred up to several tens of
thousands of pages) and starts to stabilize around the value α = 2.5 if
the number of Web pages involved is fairly high—above 100,000.
Thus, e.g., for 30,000 pages, the correlation⎯at a log scale⎯r be-
tween outdegree and frequency was only r = −0.892, and the fitting of
a power law curve C⋅x-α using MathCAD’s built-in curve fitting
command genfit resulted in α = 0.867, with an approximation error of
the sum of the absolute values of differences of 3.7 × 106 at 10−4 con-
vergence error, whereas using linear regression yielded α = 1.47, with
an approximation error of 1,589,104 at 10−4 convergence error.

Figure 11.2 shows the results for 256,062 Web pages⎯involving
1,139,426 links⎯selected at random from the 325,729 pages that
were provided. After processing this file, the X data consisted of the
outdegrees of Web pages and the Y data consisted of the correspond-
ing frequencies. For example, there were 2206 pages having outde-
gree 13, and outdegree 14 had a frequency equal to 1311. The empiri-
cal correlation coefficient⎯taking log scale data⎯r between
outdegree and frequency was r = −0.94. The linear regression method
yielded the following values: α = 2.5 for the exponent and C = 106.1043

1 Provided at http://www.nd.edu/~networks/database/index.html; downloaded January 2, 2004.

242 11 Web Retrieval and Ranking

for the constant. The computation was performed using MathCAD’s
built-in line command. The numeric computation used in this com-
mand, as well as the fact that we used 69,667 fewer pages may ac-
count for the difference of 0.05 in the exponent value compared to the
value reported in Barabási et al. (2000). Owing to the strong correla-
tion (see above) as well as to inherently present numeric approxima-
tion errors, we believe that the 0.05difference is not important, that
the values obtained in our experiment do confirm the earlier results,
and further that the power law characterizes the behavior of the Web
at very large scale. Hence, our experiment confirmed the earlier re-
sults.

10. Experiment 2. The power law for Web country domain names inlink
distribution was assessed as of 2004 (Dominich et al 2005). The
inlink frequency distribution for country domain names2 was gener-
ated as of January 2004 (Fig. 11.3). The domain names .gov, .org,
.net, .edu, .us, .com, .mil, .um, .vi were all considered as representing
the United States, whereas the domain names .ac, .uk, .gb represented
the United Kingdom, and .fr, .fx France. This yielded 238 country
domain names (88 domain names more than 5 years earlier). The
number of inlinks for every country domain name was identified us-
ing Altavista search engine’s Webmasters option during January
19–22, 2004. For example, the United Kingdom had a total of
30,701,157 inlinks, and the United States had 271,019,148 inlinks in
all. The inlinks were binned into 1000 equally spaced intervals. In
this case, the correlation between the number of inlinks and the corre-
sponding number of country domain names was found to be −0.99 (at
a log scale). The value for the power law exponent was found to be
equal to α = 1.18 using MathCAD’s linfit linear regression command
(the approximation error was equal to 14,509).

11. Experiment 3. The inlinks frequency distribution for the 43 state
university domain names in Hungary was generated as of January
2004 (Dominich et al 2005). The number of inlinks for every domain
name was identified using Altavista’s Webmasters option during
January 2004. The inlinks were binned into 140 equally spaced inter-
vals. In this case, the correlation between the number of inlinks and
the corresponding number of domain names was found to be −0.92
(at a log scale). The value for the power law exponent was found to
be equal to α = 1.15 using MathCAD’s genfit curve fitting command

2 Taken from http://www.webopedia.com/quick_ref/topleveldomains.

11.1 Web Graph 243

to fit the power law curve with an approximation error equal to 14.4
at a convergence error of 10−4.

0 0.5 1 1.5 2 2.5

1

2

3

4

5

6

outdegree

nu
m

be
r o

f w
eb

 p
ag

es

Fig. 11.2. World Wide Web power law. The frequency (i.e., number of Web
pages) of the outdegrees of Web pages plotted on a log-log scale. The points

represent actual values; the straight line represents the regression line fitted to the
real values. The correlation coefficient is equal to r = −0.94, the power law

exponent is equal to α = 2.5.

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

0.5

1

1.5

2

2.5

number of incoming links

nu
m

be
r o

f c
ou

nt
ry

 d
om

ai
ns

Fig. 11.3. Log-log plot of the power law for the inlinks of country domain names

as of January 2004. The correlation between the number of inlinks and the
corresponding number of country domain names was found to be −0.99, whereas

the value of the power law exponent was 1.18.

244 11 Web Retrieval and Ranking

The estimated values obtained experimentally for the exponent of the
power law for degree distribution in the Web are summarized in Table 11.1.

Table 11.1. Estimated Values Obtained Experimentally for the Exponent of

the Power Law for Degree Distribution in the World Wide Web
Source (experiment) Degree exponent value

Faloutsos et al. (1999) 2.15; 2.16; 2.2; 2.48

Barabási et al. (2000) 2.1; 2.45

Broder et al. (2001) 2.1; 2.72; 2.09; 2.67; 2.54

Pennock et al. (2002) 2.1; 2.72, 2.05; 2.05; 2.63; 2.66

Kumar et al. (1998) 2.38

Adamic and Huberman
(2000)

1.94

Shiode and Batty (2000) 2.91; 1.6; 2.98; 1.46; 2.18; 2

Albert (2000) 2.3

Experiment 1 2.5

Experiment 2 1.18

Experiment 3 1.15

Let us consider the different degree exponent values obtained experi-

mentally as being a sample drawn from a population consisting of degree
exponent values. The population may consist, e.g., of the degree exponent
values obtained using the data of all Web crawlers (search engines); all
domain names, as well as their subsets containing more than 100,000
pages; or a population defined in some other way. Our sample has size N =
29. The following test of the hypothesis for the mean can be performed.
The mean M of the sample is

M =
=

N

i
iN 1

1 α = 2.222,

(11.6)

and the standard deviation s of the sample is

s =
=

−
N

i
i M

N 1

2)(1 α = 0.451.

(11.7)

Using the χ2-test (with ν = N − 1 = 28 degrees of freedom), we estimate
the population standard deviation σ to lie in the interval

11.1 Web Graph 245

025.0975.0 χ
σ

χ
NsNs << , i.e., 0.363 < σ < 0.621,

(11.8)

with 95% confidence. Furthermore, we can check that deviation σ is esti-
mated to lie in the interval 0.35 < σ < 0.66 with 99% confidence. As all of
the degree exponent values αi lie in the open interval (1; 3), i.e., 1 < αi < 3,
i = 1,…,N, the mean, whether sample or population (‘true’) mean, should
also lie in this same interval. We may ask ourselves whether there exist
positive integer numbers p such that the null hypothesis H0, “μ = √p,” is
supported. Possible values for p are the numbers 4, 5, 6, 7, and 8. Using
the z-score (μ)

z-score(μ) =

N
s

M μ−
,

(11.9)

we obtain the following z-score(μ) values:

• z-score(√4) = 2.657.
• z-score(√5) = 0.163.
• z-score(√6) = 2.712.
• z-score(√7) = 5.056.
• z-score(√8) = 7.238.

As only one of these z-score(μ) values does not exceed 1.96, namely z-
score(√5), we reject the hypothesis H0 for p = 4, 6, 7, and 8, and accept H0
for p = 5 with 95% confidence. Similarly, only z-score(√5) is less than
2.58, which means that we may accept H0 for p = 5 with 99% confidence.
Thus, we may say that there is statistical support to assume that the sample
comes from a population with mean μ = √5. Thus, the power law for the
degree distribution in the World Wide Web may be written in the follow-
ing form:

f(x) ≈ C⋅x−√5, (11.10)

where f(x) denotes (approximate values of) the frequencies of the nodes
with degree x. This demonstrates the “robustness,” observed earlier in ex-
periments concerned with the exponent of the power law for the Web.

Note: An interesting property, related to number theory is the connection
between Web power law (11.10) and the golden section. As it is known, the

246 11 Web Retrieval and Ranking

golden section (also known as the golden ratio, golden mean, divine pro-
portion) is usually denoted by ϕ and is defined as the smallest root of the
equation x2 − x − 1 = 0, ϕ = (√5 − 1)/2 ≈ 0.61803398875 (the other root is
Φ = (√5 + 1)/2 ≈ 1.61803398875). It is easy to see that the following rela-
tionships hold: √5 = 2ϕ + 1, and ϕΦ = 1. A direct numerical connection
between the degree exponent as defined in Eq. (11.10) and the golden sec-
tion is 2ϕ + 1= √5. Moreover, the connection with Fibonacci numbers can
be established. Fibonacci numbers are defined recursively: F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2, n ≥ 2. Thus, their sequence is: 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89,... . A noteworthy property of these numbers is that, in general,
the ratio of the consecutive numbers has a limit equal to the golden sec-
tion, namely 5/8 = 0.625, 8/13 = 0.615, 13/21 = 0.619, …,:

ϕ=
+

∞→
1

lim
n

n

n F
F

.

The golden section and the Fibonacci numbers are related by Binet’s equa-
tion:

Fn = ()nn)(
5
1 ϕ−−Φ ,

from which we can express√5.

11.2 Link Structure Analysis

Link structure analysis (link analysis, for short) refers to methods used to
quantify the importance of networked entities of interest based on the
number of links (connections) among them. Entities may be:

• Social objects (e.g., groups of people).
• Written units (e.g., scientific papers).
• Web pages.
• Molecules.
• And so on.

 The starting point of link analysis was citation analysis, whose principle
is as follows: the number of citations a paper gets from other papers is a
measure of its importance (Garfield 1955, 1972).

11.2 Link Structure Analysis 247

 This principle was applied to compute an impact factor for journals. For
example, the impact factor IF for journal J in 2007 can be calculated as
follows:

Impact Factor Method

IF =
P
C

,

where C is the number of times J’s articles published in 2005 and 2006
were cited in other journals during 2007, and P is the number of articles
published in J during 2005 and 2006.

The impact factor is based merely on a pure count of links; no other factor
(e.g., quality, importance) is taken into account.
 The principle of citation analysis was applied for the first time by Car-
rière and Kazman (1997) for Web retrieval in the following form:

Connectivity Method

1. Using the Boolean retrieval method, we first obtain a list of Web
pages (hit list).

2. The Web graph for the hit list is constructed.

3. For each node in the graph, its connectivity (i.e., the sum of its inde-
gree and outdegree) is computed.

4. Finally, the hit list is sorted on node connectivity and presented in de-
creasing order.

 Pinski and Narin enhanced the connectivity method by noting that not
all citations have equal importance. They argued that a journal is important
if it gets citations from other important journals (Geller 1978). The mutual
citation method proposed is as follows:

248 11 Web Retrieval and Ranking

Mutual Citation Method

Let J1,…,Ji,…,Jn denote entities. A matrix M = (mij)n×n is constructed:

mij =
i

j
i

c
c

,

where ci denotes the total number of citations in journal Ji, while j
ic de-

notes the number of citations journal Jj gets (out of ci) from journal Ji. The
importance vector w = (w1 … wn) of journals is the solution of

w = MTw.

In other words, the importance vector w is the eigenvector corresponding
to eigenvalue 1 of matrix MT.

Example 11.1

Let us consider the following small Web graph:

Matrix M is

010
2
10

2
1

2
1

2
10

The importance w1 of page J1 is equal to

w1 = 0⋅w1 + 0.5⋅w2 + 0⋅w3,

where (0 0.5 0) is the first column of matrix M. Thus, the importance
vector w = [w1 w2 w3]T is given by the equation w = MTw and is equal to
w = [0.371; 0.743; 0.557]T.

J2

J1 J3

11.3 The PageRank Method 249

 The ideas behind these methods were precursors of other techniques for
computing the importance of Web pages. The basic methods are presented
in the next sections.

11.3 The PageRank Method

In the PageRank method, a Web page’s importance is determined by the
importance of Web pages linking to it. Brin and Page (1998) define the
PageRank value Ri of a Web page Wi using the equation

Β∈

=
ijW j

j
i L

R
R ,

(11.11)

where Lj denotes the number of outgoing links (i.e., URLs) from page Wj
and Bi denotes the set of pages Wj pointing to page Wi.

Equation (11.11) is a homogeneous and simultaneous system of linear
equations in the unknown Ri, i = 1,…,N, which always has trivial solutions
(the null vector, i.e., Ri = 0, i = 1,…,N).

Equation (11.11) also has nontrivial solutions if and only if its determi-
nant is equal to zero. Let G = (V, A) denote (correspond to) a Web graph,
where the set V = {W1,…,Wj,…,WN} of vertices denotes the set of Web
pages. The set A of arcs consists of the directed links (given by URLs) be-
tween pages.

Let M = (mij)N×N denote a square matrix (modified adjacency matrix) at-
tached to graph G such that (Fig. 11.4)

→
=

otherwise

WW
Lm ij

jij

0

1
.

(11.12)

 As the elements of matrix M are the coefficients of the right-hand side
of Eq. (11.11), this can be rewritten in matrix form:

M × R = R, (11.13)

where R denotes the vector (i.e., column matrix) of PageRank values, i.e.,

250 11 Web Retrieval and Ranking

R =

N

i

R

R

R

.

.
1

= [R1,…, Ri,…, RN]T. (11.14)

M
0 1/3 0 1/2
0 0 1 0
1 1/3 0 1/2
0 1/3 0 0

Fig. 11.4. A small Web graph G with four pages: 1, 2, 3, and 4. The elements of
matrix M are also shown; they were computed using Eq. (11.12).

If graph G is strongly connected (i.e., every node can be reached from
every other node following directed links), the sums of the columns in ma-
trix M are equal to 1. Thus, because matrix M has only zeroes in the main
diagonal, in matrix M − I (I denotes the unity matrix), i.e.,

−

−
=−

1...
...

...1

1

1

N

N

m

m
IM ,

(11.15)

the sums of columns is equal to zero. Let D denote its determinant:

D = ⏐M − I⏐. (11.16)

If every element of, e.g., the first line of D is doubled, we obtain a new de-
terminant D′, and we have D′ = 2 × D. We now add every line to the first
line in D′. As the sums of the columns in D are null, it follows that (after
these additions) the first row of determinant D′ will be equal to the first
row of determinant D. Thus, we have

11.3 The PageRank Method 251

D′ = 2D = D, (11.17)

from which it follows that D = 0. Since matrix M − I is exactly the matrix
of Eq. (11.11), it follows that it also has nontrivial solutions.

The determinant ⏐M − I⏐ being equal to 0 means that the number 1 is an
eigenvalue of matrix M. Moreover, the number 1 is a dominant eigenvalue
of matrix M, i.e., it is the largest eigenvalue in terms of absolute value
(Farahat et al 2006). Figure 11.5 shows an example for the Web graph of
Fig. 11.4.

 M R
0 1/3 0 1/2 0.325
0 0 1 0 0.651
1 1/3 0 1/2 0.651
0 1/3 0 0 0.217

Fig. 11.5. A small Web graph G with four pages: 1, 2, 3, and 4. The elements of
matrix M are also shown; they were computed by mij=1/Lj. The PageRank values,

i.e., the eigenvector corresponding to eigenvalue 1, were computed using the
MathCAD command “eigenvec(M,1).”

 Owing to the fact that N is large, PageRank values are computed in
practice using some numeric approximation procedure by calculating the
eigenvector R corresponding to eigenvalue 1. The following approximation
method can be used:

M × Rk = Rk+1, k = 0, 1,…,K,

R0 =
NN
1...1

,

(11.18)

where K is equal to a few tens (typically to 50), or the recursive computa-
tion is performed until

max| Rk+1 − Rk | < ε, (11.19)

where ε ∈ + is some preset error threshold. The approximation obtained
is an eigenvector whose elements sum to unity.

252 11 Web Retrieval and Ranking

Example 11.2

For the Web graph of Fig. 11.5, the numerical approximation procedure
yields the following PageRank values for ε = 0.1 and after k = 9 steps:
[0.177; 0.353; 0.35; 0.12;]T.

 Equations (11.18) are derived from the well-known power method used
to compute the dominant eigenvector x of a matrix M, in general. The steps
of the power method are as follows:

POWER METHOD

1. Choose an initial vector x0.

2. Set i = 1.

3. Calculate the next approximation xi+1 as xi+1 = Mxi.

4. Divide xi+1 by its Euclidean norm, i.e., x’i+1 =
||

1

1ix||
x

+

+i . Note: One may

divide by any nonzero element of xi+1.

5. Repeat steps 3 and 4 until error(x’i, x’i+1) < ε, where error(x’i, x’i+1) =
||x’i − x’i+1||, or error(x’i, x’i+1) = max|x’i − x’i+1|, or some other expres-
sion (as more appropriate for the application being considered).

6. The dominant eigenvector can be approximated by the Rayleigh quo-

tient:
xx
xx

T

TM
.

 For a real portion of the Web, graph G is not always strongly connected.
For example, it may happen that a page Wj does not have any outgoing
links (i.e., its outdegree is null). Such a page is referred to as a dangling
page. In such a case, the jth column⎯corresponding to page Wj⎯of matrix
M contains only zeroes. The elements of matrix M may be interpreted in
the following way: the entry mij is the probability with which page Wi fol-
lows page Wj during a walk on the Web (i.e., the probability with which,
during a navigation on the Web, a surfer jumps from page Wj to page Wi).
Based on this interpretation, a new matrix, denoted by M′, can be con-
structed:

 1. First, the columns corresponding to dangling nodes in matrix M are
replaced by columns containing all 1/N, i.e.,

11.3 The PageRank Method 253

m’ij =
N
1

, i = 1,…,N, page Wj is a dangling page.

(11.20)

 2. Second, using matrix M′, we have a new matrix M″:

(11.21)

A typical value for α is α = 0.85. Thus, the PageRank equation becomes

M″ × R = R. (11.22)

Matrix M″ is nonnegative (i.e., its elements are nonnegative numbers);
hence it has a nonnegative dominant eigenvalue (Farahat et al 2006). The
corresponding eigenvector is the PageRank vector: it is unique, its entries
are nonnegative, and it can be calculated using the approximation (or
power) method given by Eq. (11.18).

Example 11.3

Let us assume that in Fig. 11.5, page W3 is a dangling page. Then,

M″ = αM′ + (1 − α)/N, 0 < α < 1.

M′ =

025.0333.00
5.025.0333.01

025.000
5.025.0333.00

.

Application of the PageRank Method in Web Retrieval. The PageRank
method is being used by the Web search engine Google. Figure 11.6
shows the query interface and a portion of the hit list for the query “lattice
information retrieval” (as of the May 2, 2007).

254 11 Web Retrieval and Ranking

Fig. 11.6. Interface and hit list screens of the Web search engine Google,3 which
is using the PageRank method.

3 http://www.google.com.

11.4 The HITS Method 255

11.4 The HITS Method

A method called HITS for computing hubs and authorities was proposed
by Kleinberg (1999). Two types of Web pages are defined: hubs and au-
thorities. They obey a mutually reinforcing relationship, i.e., a Web page is
referred to as

• An authority if it is pointed to by many hub pages.
• A hub if it points to many authoritative pages (Fig. 11.7a).

 Given a page p, an authority weight x<p> and a hub weight y<p> is as-
signed to it. If p points to pages with large x-values, then it receives large
y-values, and if p is pointed to by pages with large y-values, then it should
receive a large x-value.

∈

←
Epqq

qp yx
),(:

∈

←
Eqpq

qp xy
),(:

(a)

(b)

Fig. 11.7(a) Illustration of operations for computing hubs and authorities.
(b) Mini-Web (example).

1

2 3

256 11 Web Retrieval and Ranking

The following iterative operations are defined:

∈

∈

←

←

Eqpq

qp

Epqq

qp

xy

yx

),(:

),(:

, (11.23)

where E denotes the set of arcs of the Web graph. Let M denote the adja-
cency matrix of the Web graph of interest. Equations (11.23) can then be
written in matrix form:

x k = MTM x k−1 ,

y k = MMTy k−1 .

(11.24)

Matrix MTM is referred to as the hub matrix, while matrix MMT is the au-
thority matrix. Thus, the HITS method is equivalent to solving the follow-
ing eigenvector problems:

MTMx = λx,

MMTy = λy,

(11.25)

where λ denotes the dominant eigenvalue of MTM (MMT). An entry mij in
matrix MMT is equal to the number of pages to which both pages i and j
point. An entry mij in matrix MTM is equal to the number of pages that
point to both pages i and j. A diagonal entry (i, i) in matrix MMT represents
the outdegree of page i. In order to compute the authority and hub vectors
in practice, the following steps are taken:

HITS Method

1. Define a root set S of Web pages (e.g., submit a query on some topic
to a commercial search engine and keep the top L hits).

2. Expand the root set S with the pages given by the inlinks and outlinks
of pages in S to obtain a base set T.

3. Eliminate pages having the same domain name.
4. Define the Web graph for the base set T.
5. Repeat a sufficient number of iterations starting with the initial values

x0 = [1,…,1]T and y0 = [1,…,1]T for both x and y:

xi+1 = MTyi, yi+1 = Mxi+1;

(After each iteration, vectors x and y are normalized such that the
squares of their entries sum to 1; this operation is called length nor-
malization.)

11.4 The HITS Method 257

It can be shown that x is the dominant eigenvector of MTM, and y is the
dominant eigenvector of MMT (Farahat et al. 2006).

Example 11.4

Let

M =

010
101
110

denote the adjacency matrix of the mini-Web graph of Fig. 11.7b. We then
have:

MMT =

101
121
112

and

MTM =

211
120
101

,

with the following eigenvalues: 1.5, 0.2, 3.2. Perform the operations xi+1 =
MTyi and yi+1 = Mxi+1 until vectors x and y do not change significantly (con-
vergence). In this example, after three steps, the following values are ob-
tained: x = [0.309; 0.619; 0.722]T and y = [0.744; 0.573; 0.344]T.

11.4.1 Application of the HITS Method in Web Retrieval

The HITS method is being used in the Web search engine Teoma (Ask).4
Figure 11.8 shows the interface and hit list screens for the query “lattice
information retrieval” (as of May 2, 2007).

4
 http://www.ask.com.

258 11 Web Retrieval and Ranking

Fig. 11.8. Interface screen and a hit list of the Web search engine Ask (Teoma),

which uses the HITS method.

11.4 The HITS Method 259

11.4.2 Latent Semantic Indexing and HITS

We recall that the singular value decomposition (SVD) of a matrix Am,n
(rank(A) = r) is defined as

A = UDVT, (11.26)

where UTU = VTV = In,n, D is a diagonal matrix D = diag(d1,...,dn), di > 0, i
= 1,...,r, and dj = 0, j > r. Matrices U and V are orthogonal, and their first r
columns define the orthonormal eigenvectors associated with the r nonzero
eigenvalues of AAT and ATA, respectively. The columns of U are called the
left singular vectors, and those of V the right singular vectors. The diago-
nal elements of D are the nonnegative square roots of the n eigenvalues of
AAT, and are referred to as the singular values of A.
 SVD and HITS are connected in the following way (Ng et al. 2001). Let
D = {d1,…,dj,…,dm} be a set of documents and T = {t1,…,ti,…,tn} be a set
of terms. A graph G = (V, E) is constructed:

• The set V = {v1,…,vi,…,vn, vn+1,…,vn+j,…,vn+m} of vertices is such that
to every term ti and every document dj there is a corresponding vertex vi
and vn+j, respectively, in graph G.

• The set E = {e1,…,eij,…,ep} of directed edges is constructed so that
there is a directed edge from a term vertex vi to a document vertex vn+j if
document dj contains term ti.

Let M be the adjacency matrix of the graph G thus constructed. The hub
weight vector y given by HITS has nonzero elements only for term vertices,
whereas the authority weight vector x has nonzero elements only for docu-
ment vertices (since no document vertex links to any vertex; only term verti-
ces link to document vertices). The hub weight vector y is equal to the first
left singular vector (i.e., the first column from left to right) of matrix U.

Example 11.5

Let D = {d1, d2} be two documents and T = {t1, t2, t3} be three terms such
that t1, t2 ∈ d1 and t1, t2, t3 ∈ d2. The adjacency matrix is

=

0
0

0
0

0
0

0
0

0
0

10000
11000
11000

M .

260 11 Web Retrieval and Ranking

The hub weight vector is

y = [−0.657 −0.657 −0.369 0 0]T,

while the authority weight vector is

x = [0 0 0 −0.615 −0.788]T.

The SVD of matrix M is M = UDVT, where

U

0.657−

0.657−

0.369−

0

0

0.261−

0.261−

0.929

0

0

0.707−

0.707

0

0

0

0

0

0

1

0

0

0

0

0

1

=

D

2.136

0

0

0

0

0

0.662

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

=

V

0

0

0

0.615−

0.788−

0

0

0

0.788−

0.615

1

0

0

0

0

0

0.707−

0.707−

0

0

0

0.707−

0.707

0

0

=

11.5 The SALSA Method

The SALSA method (Lempel and Moran 2001) offers another computation
of authorities and hubs. Let M = (wij)N×N denote the adjacency matrix of the
Web graph of interest. Let Mr = (rij) and Mc = (cij) be the following matri-
ces (Langville and Meyer 2005):

11.5 The SALSA Method 261

Njiw
w

w
c

Njiw
w

w
r

n

i ijn

i ij

ij
ij

n

j ijn

j ij

ij
ij

,...,1,;0;

,...,1,;0;

1
1

1
1

=≠=

=≠=

=
=

=
=

(11.27)

Two matrices, H (hub matrix) and A (authority matrix), are then intro-
duced:

H = Mr × Mc
T,

A = Mc
T × Mr.

(11.28)

The hub weights and authority weights are the elements of the dominant
eigenvectors of H and A, respectively.

Example 11.6

Using Fig. 11.7, we have:

M =

010
101
110

, Mr =

010
2/102/1
2/12/10

, Mc =

02/10
2/101
2/12/10

.

Then,

H =

5.005.0
075.025.0
25.025.05.0

, and A =

5.025.025.0
25.075.00
5.005.0

.

The dominant eigenvalue of H is 1 and the hub vector is the corresponding
eigenvector: [0.577 0.577 0.577]T. The dominant eigenvalue of A is 1 and
the authority vector is the corresponding eigenvector: [0.577 0.577
0.577]T.

• Vh = {s | s ∈ V, outdegree(s) > 0}, hub side.
• Va = {s | s ∈ V, indegree(s) > 0}, authority side.
• E′ = {(s, r) | (s, r) ∈ E}.

 Originally, the computation method of H and A was as follows (Lempel
and Moran 2001). The Web graph G = (V, E) was used to construct a
bipartite graph G = (Vh, Va, E) where (Fig. 11.9):

262 11 Web Retrieval and Ranking

Fig. 11.9. Graph G, bipartite graph G′ in the SALSA method.

 It was assumed that graph G was connected. (If it is not connected, then
the graph G′ is constructed for every connected subgraph of G). Matrix A =
(aij) was defined as

{ }∈ ∈
×

∈
=

'),(),,(|)deg(
1

)deg(
1

Ejkikk ha
ij VkVi

a ,

(11.29)

and matrix H = (hij) as

{ }∈ ∈
×

∈
=

'),(),,(|)deg(
1

)deg(
1

Ekjkik ah
ij VkVi

h .

(11.30)

11.6 The Associative Interaction Method 263

11.6 The Associative Interaction Method

Before we describe the method, we discuss the relevant concepts and re-
sults from the theory of artificial neural networks (ANNs).

11.6.1 Artificial Neural Networks

The fundamental principle of artificial neural networks (ANNs), states that
the amount of activity of any neuron depends on (James, 1988):

• Its weighted input.
• The activity levels of artificial neurons connecting to it.

An artificial neuron is a formal processing unit abstracted from real, bio-
logical neurons (Fig. 11.10a) (Feldman and Ballard 1982, Grossberg 1976,
Hopfield, 1984).
 An artificial neuron ν has inputs I1,…,In, which can be weighted by the
weights w1,…,wn. The total input I depends on inputs and their weights.
The typical form of I is a linear combination of its inputs:

=

=
n

i
iiwII

1
. (11.31)

As a result of total input I, the neuron can take on a state (also called an
activation level) z. State z is a function g of I, z = g(I). For example:

• Threshold function: z = 1 if I > k, and z = 0 if I ≤ k, where k is a thresh-
old value.

• Identity function: z = I.

The artificial neuron produces an output O via its transfer function f de-
pending on its state z, i.e., O = f(z), e.g.:

• Identity function: O = f(z) = z.

• Sigmoid function: O = f(z) = ze−+1
1

.

Artificial neurons can be connected to form an ANN (Fig. 11.10b). Given
two interconnected neurons νi and νj in an ANN, the output fj(zj) of νj can
be transferred to νi via the connection between them, which can alter fj(zj)
by a weight wij. The quantity wij × fj(zj) reaches artificial neuron νi, for
which it is an input.

264 11 Web Retrieval and Ranking

(a) Artificial Neuron

(b) Artificial Neural Network

Fig. 11.10(a) An artificial neuron:.a linear combination of the weighted (wi) in-
puts (Ii) activates neuron v, which takes on a state z and produces an output O via
its transfer function f. (b) ANN: interconnected artificial neurons (νj, νi); I is an
input to neuron νj and fj(zj) is its output, which is an input to neuron νi weighted

by the quantity wij, i.e., wij ⋅ fj(zj).

The state zi of neuron νi can be described by the following generic dif-

ferential equation (DeWilde, 1996):

dt
tdzi)(= −zi(t) +

=

+
n

j
iijijj tItztzwf

1
)())(),(,(,

(11.32)

where:

• t denotes time.
• zi(t) denotes the activity level of neuron νi.
• wij denotes the weight of a link from neuron νj to neuron νi.
• Ii(t) denotes external input to neuron νi.
• fj(zj(t),wij,zi(t)) denotes the influence of neuron νj on neuron νi.

11.6 The Associative Interaction Method 265

Equation (11.32) is a generic equation and can have different forms de-
pending on the choice of Ii, fj, wij corresponding to the particular case or
application where the ANN is being used. For example, when applied to
real (i.e., biological) neurons, then:

• zi denotes membrane voltage.
• Ii means an external input.
• wij is interpreted as a weight associated to the synapse.
• fj takes the form of a product between weight and zj.

For analogue electric circuits:

• zi denotes the potential of a capacitor.
• The left-hand side of the equation is interpreted as a current charging a

capacitor to potential zi.
• The summed terms mean potentials weighted by conductance.

As Eq. (11.32) can be written for every i = 1, 2,...,n, we have a system of
differential equations. The study of an ANN is carried out by assuming
that initial states z0 are known at some initial point t0. It can be shown that
in a small enough vicinity |z−z0| of z0 and |t−t0| of t0, system (11.32) has a
unique solution. From a practical point of view, the question as to the exis-
tence of solutions of Eq. (11.32) can be answered positively owing to the
Cauchy-Lipschitz theorem (Martin and Reissner 1961). It is stated here
without proof (as it is well-known in the theory of differential equations,
and because it is the result of the theorem rather than the proof that is im-
portant for us now in IR):

Theorem 11.1. Given the following system of differential equations:

)))(,),(()()((1),(+−=
j

iijjjii
i

tzwtzftztIztF
μ

,

where μi is a coefficient, consider the initial condition z(t0) = t0. If function
F(t, z) is continuous in a region Ω ⊂ 2 (2 denotes the real plane), and
function F(t, z) is a local Lipschitz contraction, i.e.,

∀P ∈ Ω ∃Κ ⊂ Ω and ∃LK > 0 constant such that

⏐F(t,z1)−F(t,z2)⏐≤ LK⏐z1−z2⏐, ∀(t,z1), (t,z2) ∈ Κ,

then there exists a vicinity V0 ⊂ Ω of point (t0, z0) in which the equation has
a unique solution satisfying the initial condition z(t0) = t0, which can be ob-
tained by successive numeric approximations.

266 11 Web Retrieval and Ranking

Equation (11.32) gives the state of every neuron at time t. By al-
lowing time t to evolve, a sequence zi(t), i = 1,…,n, of states is obtained.
This is referred to as the operation of ANN. Normally, an ANN evolves in
time toward a state that does not change any further. This is called an equi-
librium and is given by

dt
dzi = 0, i = 1, 2,...,n. (11.33)

An important mode of operation of an ANN is known as the winner-take-
all (WTA) strategy, which reads as follows: only the neuron with the high-
est state will have output above zero; all the others are “suppressed.” In
other words, WTA means selecting the neuron that has maximum state and
deactivating all the others. Formally, the WTA can be expressed as

(zi = 1 if zi = maxj zj) ∧ (zk = 0 if zk ≠ maxj zj).

11.6.2 Associative Interaction Method

Let (Fig. 11.11):

• Δ = {O1, O2,…,Oi,…,ON} denotes a set of Web pages of interest. Each
page Oi is assigned an artificial neuron ℵi, i = 1,…,N. Thus, we may
write Δ = {ℵ1, ℵ2,…,ℵi,…,ℵN}.

• Φi = {ℵk⏐k = 1,…,ni} denotes the set of artificial neurons that are being
influenced (i.e., synapsed, pointed to by) by ℵi, Φi ⊆ Δ.

• Βi = {ℵj⏐j = 1,…,mi} denotes the set of artificial neurons that influence
(i.e., synapse to, point to) ℵi, Βi ⊆ Δ.

Βi: Φi:
 ℵj ℵi ℵk

Fig. 11.11. ℵ1, ℵ2,…,ℵi,…,ℵN form an artificial neural network.

Φi={ℵk⏐k=1,…,ni} denotes the set of artificial neurons that are being influenced
by ℵi. Βi={ℵj⏐j=1,…,mi} denotes the set of artificial neurons that influenceℵi

The associative interaction method is derived from the generic equation
(11.32) (Dominich et al 2006). As the objects to be searched are Web
pages, no external input (i.e., from outside the Web) can be assumed, so

11.6 The Associative Interaction Method 267

we take Ii(t) = 0. One way to define fj is to consider the influence of a page
j on another page i as being determined by the strengths of the connections
that convey this influence, i.e., weights wij of the links between them.
Equation (11.31) thus reduces to

Β∈ℵ

+−=
ij

iji
i wtz
dt

tdz)()(

(11.34)

In order to simplify the expression, we introduce the notation:
Β∈ℵ ij

ijw =Σ(i).

It is known from the theory of differential equations (Theorem 11.1) that
the solution of Eq. (11.34) has the general form

zi(t) = Ce−t + Σ(i), (11.35)

where C is a constant that depends on the initial condition.
When the network operates for retrieval, activation spreading is taking

place according to a WTA strategy. At any time step tu, u = 0, 1,…, exactly
one neuron k ∈ {1,…,N}, i.e., the winner, is active; all the other neurons s
∈ {1,…,k−1, k+1,…,N}, s ≠ k, are deactivated, i.e., zs(tu) = 0. Taking this
initial condition into account, we express the activity level of any nonwin-
ner neuron s as

zs(t) = (1 − ttue −)Σ(s). (11.36)

If time t is allowed to increase, activity level zs(t) tends to stabilize on the
total input value Σ(s) of that neuron s:

)()(lim s
st

tz Σ=
→∞

. (11.37)

At the next time step tu+1 of these neurons s, the winner will be the neuron
p whose activity level zp exceeds the activity level zs of any other neuron s,
i.e., zp ≥ zs, expressed as

(1 − ttue −)Σ(p) ≥ (1 − ttue −)Σ(s). (11.38)

As t > tu, we have ttue − < 1, and so (1− ttue −) is strictly positive. Hence, the
winner condition zp ≥ zs becomes equivalent to Σ(p) ≥ Σ(s). In other words,
the neuron with the highest total input will be the winner.

Thus, from a practical point of view, the associative interaction method
can be applied in the following way.

Each Web page Wi is viewed as an artificial neuron and is associated
with an ni-tuple of weights corresponding to its terms (obtained after
stemming and stoplisting) tik, k = 1,…,ni. Given another page Wj, if term tjp,

268 11 Web Retrieval and Ranking

p = 1,…,nj, occurs fijp times in Wi, then there is a link from Wi to Wj, and
this may have the weight (normalized frequency weighting scheme)

=
k ik

ijp
ijp f

f
w .

(11.39)

If identifier tik occurs fikj times in Wj and dfik denotes the number of pages
in which tik occurs, then there is another link from Wi to Wj, and this may
have the weight (inverse document frequency weighting scheme)

ik
ikjikj df

Nfw 2log⋅= .

(11.40)

The total input to Wj is then

==

+
ji n

p
ijp

n

k
ikj ww

11
.

(11.41)

The other two connections—in the opposite direction—have the same
meaning as above:

• wjik corresponds to wijp.
• wjpi corresponds to wikj.

A query Q is considered a page; i.e., it is interlinked with pages (re-
ferred to as interaction between query and pages). The process of retrieval
is as follows (Fig. 11.12):

• A spreading of activation takes place according to a WTA strategy.
• The activation is initiated at the query Q = oj, and spreads along the

strongest total connection, thus passing onto another page, and so on.
• After a finite number of steps, the spreading of activation reaches a page

that was a winner earlier, giving rise to a loop (known as a reverberative
circle) This is analogous to a “local memory” recalled by the query.
(This process may be conceived as a process of association: some pages
are associated to the given query). The pages that are retrieved are those
that belong to the same reverberative circle.

Figure 11.13 shows sample⎯and typical⎯plots of activity levels zs(t)
for four neurons. It can be seen how activity levels asymptotically reach
their limit, which is equal to the corresponding total input value: 1, 5, 3, 6.

11.6 The Associative Interaction Method 269

Fig. 11.12. Associative interaction retrieval method (example). All links having

the same direction between Q and o1 and Q and o3 are shown as a single arrow to
simplify the drawing. The activation starts at Q and spreads over to o1 (total

weight = 0 .33 + 0.33 + 0.47 + 0.3 = 1.43), then to o2, and then back to o1. o1 and
o2 form a reverberative circle; hence o1 and o2 will be retrieved in response to Q.

0 2 4 6 8 10

1.2

2.4

3.6

4.8

6

time

ac
tiv

ity
 le

ve
l

Fig. 11.13. Sample plots of activity levels for four neurons in the associative

interaction method during the operation for retrieval. It can be seen how activity
levels asymptotically reach their limit, which is equal to the corresponding total

input. The highest will be the winner.

270 11 Web Retrieval and Ranking

11.6.3 Application of the Associative Interaction

The associative interaction method is used by the Web metasearch engine
I2Rmeta.5 Figure 11.14 shows the interface screen.

Fig. 11.14. Interface screen of the Web metasearch engine I2Rmeta.

11.7 Combined Methods

Combined methods aim at computing the importance (used for ranking) of
Web pages as a combination of the following:

• Their importance stemming from their belonging to a network of pages
(link importance or link-based evidence),

• Their importance given by their content (referred to as intrinsic impor-
tance or content-based evidence).

 In Tsikrika and Lalmas (2004), an overview of combined methods is
given. It is also reported that, according to experimental results, considering

5
 www.dcs.vein.hu/CIR (Meta Search).

Method in Web Retrieval

11.7 Combined Methods 271

link importance is beneficial for finding a homepage but not for searching
for a topic. The impact factor, connectivity, mutual citation, PageRank,
HITS, SALSA, and associative-interaction (or other) methods can be used
to compute a link importance for a Web page.
 In what follows, we describe major combined importance methods that
are based on lattices.

11.7.1 Similarity Merge

It is worth recalling first an early method that combines link-based and
content-based evidence as the sum of normalized deviations from mini-
mum (Fox and Shaw 1994).

The combined importance Ψj for a Web page Wj of interest is computed
using the equation

Ψj =
−

−
=

m

i

i

ss
ss

1
minmax

min ,

where

• si is the importance of page Wj given by method i.
• m > 1 is the number of methods used to calculate importance.
• smin = min si, smax = max si
 i.

i

The combined importance Ψj can be weighted (i.e., multiplied) by a factor
M denoting the number of methods for which si ≠ 0.

 In experimental results using the similarity merge method with vector
space retrieval and HITS on the TREC WT10 test collection, the similarity
merge method did not outperformed the vector space method. This might
have been due to the characteristics of the WT10 collection, or to other
causes (which were not analyzed).

272 11 Web Retrieval and Ranking

11.7.2 Belief Network

The probabilistic retrieval method based on Bayesian networks can be
used to elaborate a combined method using content importance based on
terms and authority/hub importance (Calado et al. 2003).
 The basic Bayesian network is constructed in three versions: one for
content-based evidence and two for two link-based evidence (one for hub
and another for authority evidence) of a page Wj of interest (Fig. 11.15).

 The combined importance Ψj for a Web page Wj of interest is computed
as follows:

Ψj = η⋅(1 − (1 − Cj)⋅(1 − Hj)⋅(1 − Aj)),

where:

• η is a normalizing parameter.
• Cj is a content-based importance (given by the cosine similarity meas-

ure) of page Wj given a query Q.
• Hj is a hub-based importance of page Wj.
• Aj is an authority-based importance of page Wj.

 Experimental results were reported as to the relevance effectiveness of
the above method. A total of 5,939,061 pages from the Brazilian Web
(domain.br) were automatically collected and indexed to obtain inverted
file structures (number of terms: 2,669,965; average number of terms per
page: 413). Fifty queries were selected from the most frequently asked
100,000 queries6 (average number of terms per query: 1.8). Of these 28
queries were general (e.g., movies), 14 queries were specialized (e.g.,
transgenic food), and 8 queries concerned music band names. The rele-
vance lists were compiled manually by human experts. A precise descrip-
tion of which page was relevant to which query was given to the assessors
(e.g., for the query “employment” only pages with employment ads were
considered to be relevant). When applied separately, the cosine measure
outperformed both link-based methods. When content-based evidence was
combined with authority-based evidence, the content-based only and the
authority-based only methods were both outperformed. When content-
based evidence was combined with hub-based evidence, the content-based
only and the hub-based only methods were both outperformed. The com-
bination of all three methods outperformed each method used separately.

6
www.todobr.com.br.

11.7 Combined Methods 273

Bayesian network for content-based evidence of page Wj

Bayesian network for hub-based evidence Hj of page Wj

Bayesian network for authority-based evidence Aj of page Wj

Fig. 11.15. Bayesian network types used in a belief network.

Wj

t1 tk tm

Q

Hj

t1 tk tm

Q

Aj

t1 tk tm

Q

274 11 Web Retrieval and Ranking

11.7.3 Inference Network

The probabilistic retrieval method based on inference networks can be
used to combine the link and intrinsic importance of a Web page (Tsikrika
and Lalmas 2004).

The retrieval method based on Bayesian (inference) networks is enhanced
in the following way:

• Dj corresponds to Web page Wj.

• Probability is propagated using the weighted sum method.

• An anchor window (i.e., the text inside a window of W bytes around the
anchor text, typically N = 50, N = 100) is used as text describing the
page to which it refers.

• tk (k = 1,...,m) may denote
- word
- term
- inlink
- outlink

 Extensive experimentation was carried out (on the WT2g TREC test da-
tabase) with the following results:

• When tk are terms only, precision was highest.
• When tk are inlinks only, precision was second highest.
• When tk are outlinks only, precision was third highest.
• Precision increases with the size W of the anchor window.

As a particularly noteworthy experimental result, they emphasized the
combination for tk that was better than the others (but the results were
not consistent).

11.7.4 Aggregated Method

Using the notions of fuzzy algebra and fuzzy probability (Chapter 9), we
present an aggregated method for Web retrieval (mainly for retrieval on a
given site).

11.7 Combined Methods 275

11.7.4.1 Content-Based Importance

A Web page Wj may be interpreted as being a fuzzy set in a set T =
{t1,…,tn} of terms, i.e., Wj = {(ti, ϕj(ti)) | ti ∈ T, i = 1,…,n}. Then, its fuzzy
probability Pj is

=

==
n

i
iijjj tptW

1
)()()(ϕPP ,

(11.42)

where p(ti) denotes a frequency-based probability of term ti. One way to
compute it is as follows (“favorable cases over all cases”):

=
= =

=

n
i

N
j ij

N
j ij

i f
f

tp
1 1

1)(, i = 1,…,n, (11.43)

where:

• n = number of terms.
• N = number of Web pages.
• ϕj(ti) = membership function (e.g., weight of term ti for page Wj).
• fij = number of occurrences of term ti in Wj.

Pj may be interpreted as being proportional to (or an indication of) the
chance that the page is being selected or occurs (e.g., in a hit list) based on
its content. The fuzzy probability of a page is equal to zero if the page does
not have any content (is without meaning, the weights of its terms all being
zero). The fuzzy probabilities Π = [P1,…,Pj,…,PN]T of all pages are given
by the following matrix multiplication: Π = Φ × P, where Φ = (ϕji)N×n, P =
[p(t1),…,p(ti),…,p(tn)]T.

11.7.4.2 Combined Importance Function

A combined importance functionΨ of a Web page W is defined as being a
function F of its link importance L (stemming from the link structure of the
Web graph) and its intrinsic importance given by the fuzzy probability P:

Ψ = Ψ (P, L). (11.44)

From a practical point of view, an analytic form for the combined impor-
tance function Ψ should be given. In this regard, the following assump-
tions (or axioms) seem reasonable:

 Assumption 1. It seems straightforward to require that the combined
importance of an isolated page without content be null:

276 11 Web Retrieval and Ranking

Ψ (0, 0) = 0. (11.45)

Assumption 2. If a Web page does not carry any meaning (practically it
does not have any content), i.e., P = 0, then its combined importance
should vanish, even if it is highly linked Formally:

Ψ (L, 0) = 0, L ≠ 0. (11.46)

Note: This assumption may need further investigation, because, e.g., a hub
page may be very useful even if it contains only links.

 Assumption 3. Further, from zero link importance (L = 0) need not
necessarily follow a vanishing combined importance Ψ if the fuzzy prob-
ability does not vanish (e.g., this may be the case of a “young” Web page
that is an isolated node of the Web graph, but which may carry important
meaning). Formally,

Ψ (0, P) ≠ 0, P ≠ 0. (11.47)

Assumption 4. It seems natural to require that the combined importance
of a page increase with its probability P for the same link importance L;
the same should also hold for L. Formally,

P1 < P2 F(L, P1) < F(L, P2),

L1 < L2 F(L1, P) < F(L2, P).

(11.48)

 One possible and simple analytical form for Ψ that satisfies Assumptions
1–4 is

)(),(aLaLL +=+=Ψ PPPP , (11.49)

where parameter a > 0 is introduced to “maintain” a balance between the
probability-based importance P and link-based importance L when P hap-
pens to be much larger than L. It can be easily seen that Ψ satisfies all of
the Assumptions 1–4. Figure 11.15 shows the plot (surface) of the com-
bined importance function Ψ defined by Eq. (11.49).

11.7 Combined Methods 277

Fig. 11.16. Graphical representation of the combined importance function

Ψ = PSI = PL + aP for a = 1 (The values on the L and P axes are grid points for
scaling purposes; the L and P values are obtained by division by 10).

11.7.4.3 Aggregated Method

The following combined method may be proposed for computing the im-
portance of Web pages:

Combined Method

1. Construct the Web graph G for Web pages of interest, Wj,
j = 1,…,N.

2. Compute link importance Lj for every such Web page , Wj,
j = 1,…,N. In principle, any method (connectivity, PageRank, HITS,
SALSA, associative, or other) may be used. For example, using the
PageRank method, we have

E
C
LddL

jkW
k

k
j ⋅+⋅⋅+−⋅=

Β∈
γβα)1(.

3. Construct a set of terms T = {t1,…,ti,…,tn}.
4. Construct the term-page frequency matrix M:

M = (fij)N×n.

5. Compute probabilities p(ti) as follows:

278 11 Web Retrieval and Ranking

=
= =

=

n
i

N
j ij

N
j ij

i f
f

tp
1 1

1)(.

6. Define membership functions ϕj(ti), j = 1,…,N; i = 1,…,n. For example,
ϕj(ti) = wij, where the weight wij is calculated using a weighting scheme.

7. Calculate the fuzzy probability Pj of every Web page Wj, j = 1,…,N:

==
=

n

i
iijjj tptWPP

1
)()()(ϕ .

8. Compute the combined importance Ψj for every Web page Wj
(j = 1,…,N):

Ψj = Lj Pj + aPj.

The combined method can be used to for Web retrieval as follows:

Aggregated Retrieval Method

1. Given a query Q.
2. Compute similarities between Q and Web pages Wj (j=1,…,N):

⋅

⋅
=

∩
=

=

=
n

i
ii

n

i
ijij

j

tpq

tq

QP
WQ

1

1

)(

)(

)(
)(ϕκ

ρ .

3. Construct the set of pages that matches the query:

{Wj | ρj ≠ 0, j = 1,…, J}.

4. Compute an aggregated importance Sj for Web pages Wj (j=1,…,J):

Sj = αΨj + βρj, α,β parameters.

5. Rank pages W1,…,WJ descendingly on their aggregated similarity
S1,…,SJ to obtain a hit list H.

6. Show the entire hit list H or part of it (use cut-off or threshold) to the
user.

In order to test the aggregated retrieval method, an experimental Web
search engine was developed (in C++, Java, and MathCAD). It consisted
of the following modules:

11.7 Combined Methods 279

• Crawler
• Indexer
• Matrix generator
• Retrieval and ranking module

All the .html pages on the www.vein.hu domain (which is the site of the
University of Pannonia, Veszprém, Hungary) were crawled, and 6551
HTML Web pages were downloaded (as of January 29, 2007). Terms
were extracted automatically (anything between two consecutive blank
spaces was considered to be a word), and the top 100 words were excluded
(stopwords). The majority of the pages were written in Hungarian, while
the rest were in English, German, and French. Thus, some 133,405 terms
remained (in Hungarian, English, German, and French). The link impor-
tance of pages, L, was computed using the PageRank method with α = 0, β
= 1, d = 1, and γ = 0. Membership function ϕ was taken to be the well-
known length-normalized term frequency weighting scheme. For the com-
putation of global importance Ψ, parameter a was set to a = 0.25, and for
the aggregated importance S the parameter values used were α = 100,000
and β = 0.5. These values for the parameters were established after several
trials so as to obtain nonzero values for combined and aggregated impor-
tance (PageRank values were extremely small, and thus the combined im-
portance values would almost vanish, i.e., would be practically zero, oth-
erwise).
 Other assumptions as well as combining and aggregating functions may
be proposed and experiments done with them. The fine-tuning of the pa-
rameters may also be carried out in other ways, e.g., based on user feed-
back and/or some learning procedure.

It is well known that the in vivo measurement of relevance effectiveness
of a Web search engine poses several problems. For example, recall cannot
be measured. Neither can precision, in many cases owing to the overly
many hits returned, which are practically impossible to assess. Thus, such
an evaluation should necessarily follow some reasonable compromise rela-
tive to some baseline or benchmark search engine. For example, in Thel-
wall and Vaughan (2004), users’ rankings were compared to those given
by Google. In the present measurement, the retrieval and ranking produced
by the experimental search engine was compared to those of Google, Alta-
vista, and Yahoo! All the searches were carried out on January 30, 2007.
The queries and the results are given below. As our purpose is the com-
parison of hit lists with one another, it will be sufficient to give only the
URLs of the hits returned. The hits (the first five that could be seen on the
screen) were assessed for relevance manually. We note that while it was

280 11 Web Retrieval and Ranking

possible to restrict the search to .html format in Altavista and Yahoo!, this
was not possible in Google.

Experiment 1. The query was: “nitrálás.” The hit lists were are as follows:
Aggregated Method:

www.vein.hu/public_stuff/oik/tematikak/tematikak/2003-04-2/VETKTC2214c.html
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VETKTC2214c.html
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VEMKTC2214c.html
www.vein.hu/public_stuff/oik/tematikak/tematikak/2004-05-2/VEMKTC2214c.html

Google:
www.vein.hu/public_stuff/oik/tematikak/tematikak/2004-05-2/VEMKTC2214c.html

Altavista:
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VETKTC2214c.html
www.vein.hu/public_stuff/oik/tematikak/tematikak/2003-04-2/VEMKTC2214c.html
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VEMKTC2214c.html

Yahoo!:
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VETKTC2214c.html
www.vein.hu/public_stuff/oik/tematikak/tematikak/2003-04-2/VEMKTC2214c.html
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VEMKTC2214c.html

Google returned only one result that was relevant. The same result was
also returned by the aggregated method in the fourth position. Altavista and
Yahoo! returned the same hits, all of which were relevant. The same three
hits were all returned by the aggregated method, but ranked differently. In
conclusion, the aggregated method returned the highest number of hits, all
were relevant, and some of them were also returned by Google, Altavista,
and Yahoo!. According to the results of Experiment 1, the following ranking
in terms of relevance effectiveness of the four search engines were:

1. Aggregated method
2. Altavista, Yahoo!
3. Google

Experiment 2. The query was “supercomputer.” The hit lists returned
were as follows:

Aggregated Method
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/szemelyzeti.html

Google (15 hits):
 …

www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/szemelyzeti.html
 …

Altavista:
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/Publikaciokkal_ka

pcsolatos_utmutato.doc
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/szemelyzeti.html

11.7 Combined Methods 281

Yahoo!:
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/Publikaciokkal_ka

pcsolatos_utmutato.doc
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/szemelyzeti.html

Google returned 15 hits of which all may be viewed as relevant. Out of
these 15, the first six hits had .pdf format. The hit returned by the aggre-
gated method had rank seven in the Google list. Altavista and Yahoo! re-
turned the same hit list; all were relevant, and the first hit was in .doc for-
mat. Thus, one may conclude that all four search engines performed
practically equally well:

1. Altavista, Yahoo!, Google, Aggregated Method

Experiment 3. The query was: “bizottság” (in English: “committee”). The
hit lists returned were as follows:

Aggregated Method

www.vein.hu/belso/2004_2005_tanevi_ertesito/menus/etanacsmenu.html
www.vein.hu/belso/2003_2004_tanevi_ertesito/menus/etanacsmenu.html
http://www.vein.hu/www/intezetek/fdsz/generate.php?file_name=kepvisel.txt
http://www.vein.hu/www/intezetek/fdsz/szak_szerv/menu.php
www.vein.hu/oktatok/egyetemi_szervezetek/fotitkarsag/korlevelek/nre/valasztas.html

Google (1030 hits):
 …/index.php

kulugy.vehok.vein.hu
 www.vein.hu/library/iksz/serv/dos/szmsz.htm

http://www.vein.hu/www/intezetek/fdsz/szak_szerv/nevsor.html
www.vein.hu/oktatok/szabalyzatok/kozmuv.html
 …

Altavista (985 hits):
 …/index.php
 …/index.php
 …/index.php
 .../index.php
 ….

Yahoo! (889 hits):
 …/index.php
 …/index.php
 …/index.php
 .../index.php
 ….

All the hits returned by the aggregated method were relevant. The first
three hits returned by Google were not relevant, whereas the fourth and
fifth were relevant. The hits returned by Altavista and Yahoo! were not
relevant. According to the results of Experiment 3, the following ranking
in terms of relevance effectiveness of the four search engines were:

282 11 Web Retrieval and Ranking

1. Aggregated method
2. Google
3. Altavista, Yahoo!

In conclusion, these experimental results show that a retrieval and
ranking based on the aggregated method can outperform commercial
search engines such Google, Altavista, and Yahoo! (at least for single-term
queries).

11.8 Lattice-Based View of Web Ranking

11.8.1 Web Lattice

Let LWeb denote a set W = {W1,…,Wi,…,WN} of Web pages or a set S =
{S1,…,Si,…,SN} of Web sites of interest. Then, set LWeb can be turned into a
lattice as follows:

1. 0 = ∅.
2. 1 = W (or S).
3. The meet ∧ and join ∨ operations are shown in Fig. 11.17.

If the Web lattice is a site lattice LS, then, in the site graph, there is an

edge from site si to site sj if site si has a page pointing to a page situated on
site sj.
 Matrices M used in link analysis methods are defined for the Web lattice
LWeb. It can be easily seen that lattice LWeb is modular and not distributive.

(a)

1

0

W1 Wi WN

Fig. 11.17. Lattices LWeb of (a) Web pages and (b) of Web sites.

11.8 Lattice-Based View of Web Ranking 283

 (b)

Fig. 11.17. (Continued)

11.8.2 Chain

Let (A, ≤) be a poset. Then, poset (A, ≤) is said to be completely ordered if
any two of its elements can be compared with one another, i.e, a, b ∈ A
we have either a ≤ b or a ≥ b or a = b.

Example 11.7

The set of real numbers is a completely ordered set with respect to the
relation ≤.

 Let be a subset of a poset A, ⊆ A. If is completely ordered, then it
is called a chain. It can be shown that:

Theorem 11.2. Any chain is a lattice.

 Proof. We know that the lattice is a poset in which any two elements
have an infimum and a supremum. Let be a chain. Then, any two of its
elements, a and b, are comparable. Without restricting generality, let a ≤ b.
Then, sup {a, b} = b, inf {a, b} = a.

 From Theorem 11.2, it follows that any subset R of the set of real
numbers, R ⊂ , is a chain (with respect to ≤), and also a lattice.
 The methods described in Sections 11.2–11.7 allow for computing page
importance, which makes the ranking of a set W = {W1,…,Wi,…,WN} of
Web pages possible. Formally, let Ii denote the importance of page Wi
computed by some method (i = 1,…,N). Because Ii is a real number, i.e., Ii

1

0

S1 Si SN

 ∀

284 11 Web Retrieval and Ranking

∈ , i = 1,…,N, it follows that (Theorem 11.2) set {I1,…,IN} ⊂ is a
chain and hence a lattice.

11.8.3 Ranking

Ranking in Web retrieval can be formally defined as follows:

Definition 11.1. Given a lattice LWeb. Ranking is a lattice-lattice function ρ
from a Web lattice LWeb to a chain R ⊂ :

ρ : LWeb → R, ρ(A) = r, ∀A ∈ LWeb,

where the lattice-lattice function ρ gives the importance of A.

 We may assume, without restricting generality, that R = [0; 1]. It can be
shown that ranking has the following property:

Theorem 11.3. Ranking is not submodular.

 Proof. The submodularity condition is as follows:

ρ(x ∨1 y) ∨2 ρ(x ∧1 y) ≤ ρ(x) ∨2 ρ(y),

where ∨1 and ∧1 are the join and meet defined in lattice LWeb, and ∨2 is the
join defined in the chain lattice [0; 1]. Let ρ(W1) = r1 and ρ(W2) = r2. We
can assume that ρ(1) = 1 (i.e., the whole Web is ranked highest) and ρ(0)
= 0 (i.e., the empty set is ranked lowest). If we take x = W1 and y = W2, we
obtain

ρ(W1 ∨1 W2) ∨2 ρ(W1 ∧1 yW2) = ρ(1) ∨2 ρ(0) = 1,

which is not less than or equal to

ρ(W1) ∨2 ρ(W2) = max (r1, r2).

The proof is similar for lattice LS.

11.8.4 Global Ranking

By taking the direct product of lattices LWeb and L’Web, a new lattice is ob-
tained. We have the following possibilities:

(a) LWeb = LW and L’Web = LW’.
(b) LWeb = LW and L’Web = LS.
(c) LWeb = LS and L’Web = LS’.

11.8 Lattice-Based View of Web Ranking 285

Figure 11.18 shows an example for the direct product LW × LS between a
page lattice LW and a site lattice LS.

Fig. 11.18. Direct product of a page lattice and a site lattice (example).

Figure 11.19 shows an example for the direct product LW × LW’ between
two page lattices.

Fig. 11.19. Direct product of two page lattices (example).

1

0

W1 W2

1

0

W’1 W’2
× =

W1 W’1 W’2 W2

W1 W’1 W1 W’2

W2 W’1 W’2 W2

0

1

1

0

W1 W2

1

0

S1 S2
× =

W1 S1 S2 W2

W1 S1 W1 S2 W2 S1 W2 S2

0

1

286 11 Web Retrieval and Ranking

 Taking into account the meet and join operations in the direct product
lattice, we can define a global ranking for the direct product of two Web
lattices in a general way as follows:

Definition 11.2. Let ρ : LWeb → [0; 1] and ρ′ : L′Web → [0; 1] be two rank-
ings. A global ranking is the lattice-lattice function

γ : LWeb × L’Web → [0; 1],

=
=

=
=

=

ABXif(B))'(A),f(
AXif(X)

Xif
Xif

X

ρρ
ρ

γ
1
0

1
0

)(.

It can be shown that global ranking has the following property:

Theorem 11.4. Global ranking is not submodular.

 Proof. The submodularity condition is

γ (x ∨1 y) ∨2 γ (x ∧1 y) ≤ γ (x) ∨2 γ (y).

Let ρ(AB) = r1 and ρ(BC) = r2. If we take x = AB and y = CD, we obtain

γ (AB ∨1 BC) ∨2 γ (AB ∧1 BC) = γ (1) ∨2 γ (B) =

ρ(1) ∨2 ρ’(B) = max (ρ(1), ρ’(B)) = max (1, ρ’(B)) = 1,

which is not less than or equal to

γ (AB) ∨2 γ (BC) = max (γ (AB), γ (BC)).

 Let W ∈ LW, S ∈ LS, and W be on site S. As global ranking is not sub-
modular, we should have

γ (W ∨1 S) ∨2 γ (W ∧1 S) > γ (W) ∨2 γ (S)

γ (WS) > max (ρ(W), ρ’(S)).
(11.50)

Element “WS” is interpreted as viewing page W at a global level (of the en-
tire Web), not just at the level of site S to which it belongs. Hence, γ (WS)
may represent a means of computing an importance at Web level for a
page W also taking into account the importance of the site the page belongs
to and without having to manipulate the graph of the entire Web.
 We can suggest the following global ranking method:

11.8 Lattice-Based View of Web Ranking 287

Global Ranking Method

1. Let LW and LS be two Web lattices (W∈LW , ∃S ∈ LS: W ∈ S).

2. Use a method to produce rankings ρW and ρ’S.

3. Compute the global importance γ(W) for every page W using the
global ranking function γ for the direct product lattice LW × LS :

γ (X) = f(X, a, b),

where a and b are real parameters.

From a practical point of view, the really useful case is when X is equal

to a page and a site, i.e., X = AB, where A is a page and B is a site. In such
a case, we can use the following form for γ (X):

γ (X) = γ (AB) = aρ(A) + bρ’(B),

A ∈ LW, B ∈ LS.
(11.51)

i.e., we can utilize a linear (weighted) combination of importances (or
some other form that can be defined and fine-tuned experimentally).
 Aberer and Wu (2003) reported experimental results for a version of the
global ranking method (the exact values of parameters a and b were not
reported; these were adjusted and tuned experimentally). The ranked hit
lists they obtained were compared with each other using the Spearman
footrule equation:

,|)()(|
0

10 −
=

n

i
iRiR (11.52)

where R0(i) and R1(i) denote the rank of page (site) i. The results obtained
showed that using global ranking yielded rankings that were at least as
good as those using a link analysis method globally. The rankings were
also at least as good as those obtained by the Google search engine.

The global ranking method has the following advantages over tradi-
tional methods:

1. Global ranking can be obtained from local rankings (e.g., some link
analysis method is applied to rank the pages on a site and to rank
sites, and then a ranking for pages can be obtained without manipulat-
ing larger graphs).

2. Owing to point 1, both running time and disk space (memory) is saved.
This is very important because computation costs are prohibitively

288 11 Web Retrieval and Ranking

high (the size of the Web is increasing very rapidly, approximately
exponentially). For example, one does not have to apply a traditional
link analysis method for the entire Web.

3. The Global ranking method allows for computing rankings in a dis-
tributed fashion, and thus better scalability can be achieved.

4. The ranking function for the site lattice LS need not be computed very
frequently because intersite links change at a slower rate than inter-
page links.

5. If interpage links change, then only the affected page lattice LW has to
be recomputed.

6. Algebraic equivalences and other mathematical properties can be ex-
ploited in order to find alternative rankings.

7. Relevance feedback from users can be more easily included and taken
into account because recomputation refers only to the affected Web
lattice (not to the whole Web), or it can used to fine-tune the global
ranking function γ.

8. The information provided by hub sites can be used to enhance the
global ranking function γ.

11.8.5 Structure-Based Ranking

The ranked hit list returned by a Web search engine is typically very long.
This may frustrate the user if he/she wants to assess all the corresponding
pages. Further, the hit list fails to indicate how a relevant page is related to
the site to which it belongs. Similarly, at the page level, the structure of the
page could help the user better assess its content or relevance.
 A solution to these problems is described in what follows. We first prove
that:

Theorem 11.5. Any tree can be transformed into a lattice.

Proof. Let T = (V, E) denote a tree (i.e., a connected and acyclic graph).
Let V = {root, v1, v2,...,vn} denote the vertices of tree T.

A lattice (L , ∧, ∨) can be constructed in the following way:

11.8 Lattice-Based View of Web Ranking 289

• The elements of the lattice are L = V ∪ {0}, where 0 denotes the null
element.

• root = 1.

• The meet vi ∧ vj = 0, if vi and vj are leaves (i ≠ j).

• The meet vi ∧ vj is obtained by following paths downward to the first ver-
tex where the two paths intersect [if vi and vj are not both leaves (i ≠ j)].

• The join ∨ of any two elements is given by following the paths upward
to the first vertex where they intersect.

 Next, we prove that:

Theorem 11.6. Any document can be transformed into a lattice.

 Proof. Any document has a well-defined structure consisting of sec-
tions organized into a hierarchy. For example: document, part(s), chap-
ter(s), part(s), paragraph(s), sentence(s).

root = 1

0

290 11 Web Retrieval and Ranking

Formally, the hierarchy of sections is a tree. Thus (Theorem 11.5), the
structure of any document can be transformed into a lattice.

A graphical representation of the document tree, called DocBall, is pro-
posed in Vegas et al. (2007) (Fig. 11.20):

• DocBall consists of concentric rings.
• The innermost (central) ring corresponds to the root, i.e., to the docu-

ment (as a whole) being considered.
• The outermost ring is divided into sections corresponding to the leaves

of the document (i.e., to the basic structural elements).
• The remaining rings are divided into sections s according to the remain-

ing tree vertices. Every section is defined as a triple s = (l, a, b), where l
denotes the level of the section, a is the angular degree where the sec-
tion begins (the origin of DocBall is at 12 o’clock), and b is the angular
degree where the section ends.

Part 1

Chapter 1 Chapter 2

Part 1 Part 2 Part 1

Document

Part 2

11.8 Lattice-Based View of Web Ranking 291

Fig. 11.20. DocBall representation of a document.

 A section sj = (lj, aj, bj) is said to be the ancestor of section si = (li, ai, bi),
which is expressed as sj ≤ si, if ai ≤ aj and bj ≤ bi.
 It can be shown that there is a connection between DocBall and concept
lattices:

Theorem 11.7. The notions of ancestor (in DocBall) and subconcept (in
concept lattice) are equivalent to each other.

 Proof. Let s = (l, a, b) denote a section in a DocBall, and C = (A, B) a
concept in a concept lattice. With the correspondences

• s ↔ C
• b ↔ A
• a ↔ B
• ≤ ↔ ⊆

the definition of the notion of ancestor, i.e.,

DOCUMENT: D
Chapter 1: C1

Par 1: P1
Par 2: P2

Chapter 2: C2
Par 1: P1

D C1C2

P1

P2

P1

292 11 Web Retrieval and Ranking

sj ≤ si ⇔ (ai ≤ aj and bj ≤ bi),

and the definition of the notion of subconcept,

Cj ⊆ Ci ⇔ (Bi ⊆ Bj and Aj ⊆ Ai),

are equivalent.

 It can be shown that a Web site S (e.g., any URL ending with the sym-
bol ‘/’) can be transformed into a lattice.

Theorem 11.8. Let S denote a Web site, and let W1,…,Wn be the pages on
it. Then, the structure of S can be transformed into a lattice.

 Proof. Let GS denote the Web graph of site S. Using BFS (breadth-first-
search) or DFS (depth-first-search) yields a spanning tree of graph GS. Ac-
cording to Theorem 11.5, GS can be transformed into a lattice.

 Vegas et al. (2007) noted that based on experimental results, BFS yields
a tree that is a more adequate and realistic representation of the structure of
the site. Theorem 11.8 can be used to design methods for the computation
of the importance of a single site (and, thus, using the aggregated method,
for Web pages as well) taking into account the meet and join operations in
the site lattice to propagate page importance through the lattice up to the
site. A very simple, but practical, method is to compute the importance ρS
of the site as the average of importances ρi of its pages Wi as follows:

ρS =
=

n

i
in 1

1 ρ . (11.53)

11.9 P2P Retrieval

11.9.1 P2P Network

A peer-to-peer (briefly P2P) network is a computer network in which each
computer (workstation) has equal “rights” (capabilities) and “duties” (re-
sponsibilities), as opposed to the client/server network (in which some
computers, the servers, are dedicated to serve other computers, the clients).
In other words, one may say that in a P2P network every computer is both
a server and a client at the same time.

11.9 P2P Retrieval 293

On the Internet, a P2P network allows a group of computers (and thus
their users as well) running the same network software to connect with one
another and access one another’s information. One widely used P2P net-
work software is Gnutellanet.7 The network program stores the IP ad-
dresses of the participating computers, and thus all users who are online
connect to one another. (Another P2P network software is Napster.)

One of the advantages of a P2P network is that, e.g., the employees of
an organization (company) can share data (e.g., files) without the need to
have a central server. One of the disadvantages of a P2P network is that
major producers of content (e.g., record companies) are concerned about
illegal sharing of copyrighted material (e.g., music) over a P2P network.

11.9.2 Information Retrieval

Each peer has a repository of information (texts, audio, video, etc.). When
a query is initiated at one of the peers, it is sent to the other peers. These
peers generate hit lists from their own repositories in response to the query
they receive, and then send them to the peer that initiated the query.
 Information retrieval in a P2P network has a number of characteristics:

• There is no central repository (as, e.g., in a traditional IR system),
• A large quantity of data can be added to and deleted from the network in

an ad hoc manner,
• Computers enter and leave the network in an ad hoc way.

 The way in which peers generate hit lists varies, e.g., using keyword
match (Boolean retrieval with AND-ed query) or some other method.
 What is really specific to P2P retrieval is the way in which the query is
sent over the network (i.e., from the querying computer to peer com-
puters). Several of the methods that are utilized (Kalogeraki et al. 2002)
are described briefly below.

11.9.2.1 BFS Method

In the BFS method the querying node (computer) sends the query to all its
neighbor peers. When a neighbor receives the query, it sends it to other
peers, generates its own hit list from its repository, and sends it to the que-
rying peer. The BFS method is simple. However, it is very resource de-
manding: the query is sent along all paths, so a low bandwidth node can

7
 http://www.gnutella.com.

294 11 Web Retrieval and Ranking

considerably reduce retrieval time. (Flooding can be avoided or prevented
by assigning a TTL, time-to-live, parameter to the query.)

11.9.2.2 RBFS Method

In the RBFS (random breadth first search) method, the querying peer does
not send the query to all its neighbors, only to randomly selected ones,
e.g., to half of them selected at random. This, of course, has the advantage
of being faster than the BFS method, but important nodes may never be
reached (disadvantage).

11.9.2.3 ISM Method

In the ISM (intelligent search mechanism) method, each peer keeps a pro-
file of its neighboring peers. The profile contains the queries (typically, the
last N queries) and the corresponding hit lists that the neighboring peers
have answered. At the same time, every peer produces a ranking of its
neighboring peers in order to decide to which ones a new query should be
forwarded. Ranking is produced using a similarity measure Si between it-
self and peer i (the peer of interest). The similarity measure is computed as
follows. Given a new query q originated at a peer, the cosine measure (or
other measure) cij is calculated between q and all queries j in the profile of
peer i. Every cij is multiplied by the corresponding number nj of hits to
query j, and then the products are added up, i.e., Si = j iij ncα , where α is a
parameter that allows increasing the weight of most similar queries (and
should be tuned manually). The querying peer ranks its neighbors i on their
scores Si, and sends the query to those highly ranked. The ISM method
works well when peers store specialized information. As search may get
locked in a cycle, it is recommended that a few randomly chosen peers
(apart from those chosen based on Si) also receive the query.

11.9.2.4 >RES Method

In the >RES (the most results in past) method, the querying peer sends the
query to the peers that returned the highest number of hits for the last M
queries.

11.9.2.5 HDS Method

The HDS (high degree seeking) method exploits the power law property of
the peer graph. First an arbitrary node is chosen, and then a node with a
degree higher than the current node. Once the highest-degree node has

11.9 P2P Retrieval 295

been found, a node having second highest degree will be chosen, and so
on. The query is iteratively sent to all the nodes in a neighborhood of the
current node until a match is found. This broadcasting is costly in terms of
bandwidth. If every node keeps adequate information (e.g., file names)
about its first and second neighbors, then HDS proves useful. As storage is
likely to remain less expensive than bandwidth, and since network satura-
tion is a weakness of P2P, HDS can be an efficient alternative to exhaus-
tive searching. Adamic et al. (2003) showed that the expected degree E(α,
n) of the richest neighbor of a node having degree n is given by

E(α, n) = +−+
−

−
=

−−−

−

α

αα

α

α /1

0

121

1/2
))1(1()1(

)1(
)2(N

x

n

n
xxx

N
n

,

(11.54)

where N denotes the number of peers and α is the power law exponent.
Figure 11.21 shows simulation results for the ratio E(α, n)/n for different
values of α.

0 20 40 60 80 100
0

100

200

300

400

500

600

alpha=2.1
alpha=2.2
alpha=2.236
alpha=2.3

degree of node

de
gr

ee
 o

f n
ei

gh
bo

r /
 d

eg
re

e
of

 n
od

e

Fig. 11.21. Simulation of the ratio of the expected degree of the richest neighbor
of a node with degree n for different values of the power law exponent alpha. The

total number of nodes is equal to 100,000,000.

It can be seen that for a power law exponent between 2 and 2.3, the
chance of finding a richer neighbor is higher than the degree of the node it-
self within a relatively large interval of degree values, which means that
HDS can be applied nontrivially. (As the exponent is fairly robust,

296 11 Web Retrieval and Ranking

11.9.3 Lattice-Based Indexing

In order for a peer to produce a hit list in response to a query q, a similarity
measure between q and documents stored in its repository should be com-
puted. Toward this end, the technology presented in Chapter 4 can be used
to compute term weights. Extracting terms from documents in the reposi-
tory can yield a number of terms that may be too large for a P2P network
(superfluous terms, strict bound on the size of posting lists, high bandwidth
consumption).
 In order to ameliorate problems caused by too many terms, one can use a
document-based indexing method based on lattices (Skobeltsyn et al.
2007).

11.9.3.1 Document-Based Indexing

Initially, the peers build an index together that contains very discriminative
terms. Such terms can be determined in several ways. One possibility is to
use the term discrimination model (TDM) introduced in Salton et al.
(1974, 1975a). TDM is based on the underlying assumption that a “good”
term causes the greatest possible separation of documents in space,
whereas a “poor” term makes it difficult to distinguish one document from
another. Each term of interest is assigned a term discrimination value
(TDV) defined as the difference between space “densities” before and after
removing that term. The space density Δ is defined as an average pairwise
similarity ρ between documents D1,...,Dm:

≠
=−

=Δ
m

ji
ji

ji DD
mm 1,

),(
)1(

1 ρ . (11.55)

Alternatively, space density Δ can be computed⎯faster⎯as the average
similarity between documents and a centroid document (defined as one in
which terms have frequencies equal to their average frequencies across the
collection of documents). Let Δbk and Δak denote the space densities before
and after removing term tk, respectively. Then, the TDVk of term tk is de-
fined as TDVk = Δbk − Δak. The best discriminators generally have positive
TDVs, whereas the worst discriminators usually have negative TDVs.

HDS-based crawling may have a theoretical justification in the golden sec-
tion (see Section 11.1).

11.9 P2P Retrieval 297

Terms having TDVs around zero do not modify space density significantly
when used as index terms. TDV can be used to decide which terms should
be used as index terms. Based on experimental reults, terms with average
document frequencies (between approximately m/100 and m/10) usually
have positive TDVs, and can be used directly for indexing purposes.
Terms whose document frequency is too high generally have negative
TDVs, and are the worst discriminators. Too rare or specific terms have
TDVs near zero and should not be used directly as index terms.
 Another method to compute term discrimination values is based on the
notion of entropy and given in Dominich et al. (2004):

H = − =

m

j jj pp
1 2log

=
= mk

k

j

jp
,...,1

ρ
ρ

 j = 1,…, m,

(11.56)

where m is the number of documents and ρk is the similarity between a
term of interest and document k. The higher the entropy H of a term, the
better its discrimination power.

11.9.3.2 Query Lattice-Based Indexing

The index will be gradually enriched by query terms at retrieval time using
the following method (Fig. 11.22).

1. When a query q = {t1,…,tn} (where t1,…,tn are the query terms) origi-
nates at a peer, the peer generates the Boolean algebra of query terms
t1,…,tn, i.e., (℘({t1,…,tn}), ⊆).

2. Then, the peer starts exploring the query lattice from the supremum 1
= {t1,…,tn} in decreasing subset size order to single terms.

3. For every node in the lattice, the querying peer requests hit lists from
other peers.

4. If the node is indexed in a peer, then the nodes whose join that node
is will be skipped.

5. If two nodes are not indexed in any peer, then their meet will still be
sent out to peers for retrieval.

6. After exploring the entire query lattice, the querying peer makes the
union of all the hit lists received, and reranks the documents against
the query (using some ranking method).

298 11 Web Retrieval and Ranking

7. When a peer recognizes that a query term (or lattice node) is a new
term (i.e., it is not in the index), then it sends an indexing request to
other peers that can include it in their indexes. Thus, that term (or lat-
tice node) can be used in retrieval for a new query in future. This on-
demand indexing mechanism can also, or only, be performed for
popular terms (i.e., for terms that are considered to be popular in
some sense, e.g., they have been used frequently).

Fig. 11.22. Query lattice used in P2P indexing.

11.10 Exercises and Problems

1. Let M denote a Web graph. Represent it as an array, an adjacency list, or
using some other method. Observe which representation method requires
the least amount of memory.

2. Let W denote a portion of the Web and M the Web graph of W. Modify
W so as to contain weighted links.

3. According to experimental results accumulated so far, the Web power
law (for page degree distribution) is characterized by a robust exponent
value around 2.5. Check the validity of this result by performing your own
experiment.

4. Show that the connectivity method (Section 11.2) yields equal rank val-
ues when the Web graph W is a bipartite graph (hubs and authorities) with
vertices having equal degrees.

5. Modify the connectivity method so as to obtain useful ranking for a
Web graph W as in Exercise 4.

t1,...tn

t1,...tn-1 t2,...tn

t1 t2 . . . tn

. . .

.

11.10 Exercises and Problems 299

6. Given a Web graph W. Calculate the importance of pages using: (i) the
mutual citation method, and (ii) the PageRank method. Analyze the differ-
ences in the importance values obtained.

7. You are given a Web portion containing only pages with zero outdegree.
Compute link importance for these pages.

8. Let W denote: (i) a citation graph of authors; (ii) a partnership graph
(vertex: partner, and there is an arc from partner pi to partner pj if pi is us-
ing a product made by pj); (iii) a “who knows who” graph. Compute the
importance of authors, partners, and persons using several link analysis
methods. Discuss the results obtained.

9. Prove that in the associative interaction method there will always be at
least one reverberative circle.

10. Given a Web graph W. Apply the similarity merge method to compute
the combined importance Ψ, also using a weighted version. Discuss the re-
sults obtained and experiment with several weightings.

11. Show that in the belief network method importance Ψ reduces to the
normalizing parameter if the cosine measure is equal to 1.

12. Show that function Ψ = PeL is also a combined importance function
that can be used in the aggregated method. Experiment with this combined
importance function using a Web portion of your choice.

Chapter 2

2.4.1. It is a proposition if either the value true (T) or false (F) can be as-
signed to it for certain. But is this sure? Discussion.

2.4.2. It depends on what is being asserted, i.e., on what the emphasis is
on: is it on sun or on shining?

2.4.3. Identify the logical structure of the sentence. Let P = “John is liar,”
and Q = “Peter is a truth teller.” Take into account the definition of impli-
cation P Q.

2.4.4. Identify the logical structure of the sentence (P Q). Use formal
implication to write the sentence and then also use conjunction.

2.4.5. Formulate a logical expression using the terms given. Pay attention
to negating what you are not interested in (namely Web ranking method).
For example, waltz AND rock-and-roll AND NOT(Web ranking method).

2.4.6. You obtain two posets (one on the date and the other on the title
length). What you should observe as an interesting and practically impor-
tant fact is that the two posets are different (in general).

2.4.7. For example, you can order the toys by color, by shape, by function,
by dimension (according to childrens’ needs, pedagogical considerations,
storing requirements).

2.4.8. Denote the number of occurrences of term Ti in the entire set B of
Web pages (or books) by 1, 2,...,ni. There are ni classes (why?). If this par-
titioning is performed for every term (i.e., i = 1, 2,...,m), there will be cor-
responding partitions. In general, different partitions are obtained.

Solutions to Exercises and Problems

2.4.9. Because any element in a set occurs at most once, the collection
B1,…,Bn forms a set only if every page (book) occurs only once. As this is
usually not true (there are books or Web pages that are held in several cop-
ies), they do not generally form a set.

Chapter 3

3.12.1. Verify the validity of conditions (3.15) in Definition 3.2.

3.12.2. We introduce the smallest element, 0, and the largest element, 1.
Thus, the set {0, t1, t2, t3, 1} is obtained. Case (i):

In a similar manner, cases (ii)–(iv).

3.12.3. Sufficiency: X ∨ (Y ∧ Z) = X ∨ (Z ∧ X) = X, (X ∨ Y) ∧ (X ∨ Z) = (X
∨ X) ∧ (Z ∨ Y) = X ∧ (Z ∨ X) = X. Necessity can be proved in a similar
manner.

3.12.4. Show that the distributive law Eq. (3.15) does not hold.

3.12.5. Let P denote the set of all distinct publications (e.g., their ISBN
numbers). Use the notion of powerset ordered by set inclusion.

3.12.6. The thesaurus may be viewed as being a poset. A poset is a lattice
if any two of its elements have a supremum and an infimum. Analyze and
discuss when these properties hold.

3.12.7. See problem 3.12.6.

t1 t2
 t3

0

1

302 Solutions to Exercises and Problems

3.12.8. In general, no. For example, antisymmetry need not be satisfied.
Check when the axioms of lattice are satisfied.

3.12.9. Yes. It is finite, so it is complete, etc.

3.12.10. Yes (subset of the Cartesian product W × W). Let wi → wj ⇔ wi ≤
wj. Does any pair of pages have a supremum and infimum?

3.12.11. Check the validity of the corresponding definitions.

Chapter 4

4.11.1. Identify the terms first and then count the occurrence of each. Ap-
proximate C and α. Discussion.

4.11.2. Measure running time using built-in functions of the programming
language you use. Store the term-document matrix using different formats,
e.g., adjacency list, binary coding (for Boolean matrix, etc.). Observe
whether economical storage and matrix operations are directly or indirectly
proportional to each other. Discussion.

4.11.3. First do a literature search and follow that by your own experience.
Discuss the Web characteristics learned or discovered.

4.11.4. The problem is straightforward. However, if, e.g., the precision-
recall graph you obtain is not decreasing, then (very probably) something
must have gone wrong.

Chapter 5

5.5.1. Use the method given in Section 5.3.2.

5.4.2. Verify the distributive law, or use Theorem 5.4.

5.5.3. Analyze several concept lattices.

5.5.4. See Section 5.1.1.

5.5.5. Verify the distributive law, or use Theorem 5.4 or Exercise 5.5.2.

Solutions to Exercises and Problems 303

Chapter 6

6.4.1. Identify terms, e.g., route planner, Europe, car. Build a Boolean ex-
pression using the terms.

6.4.2. Identify terms, e.g., opening hours, chair, museum, United Kingdom,
car seat, chair of organization. Build a Boolean expression using the terms.

6.4.3. Both the Boolean method and the selection operator are based on
Boolean expressions. Observe the data on which they operate.

6.4.4. Use the technology described in Chapter 4 to select index terms T,
and then build the lattice ℘(T). Experiment with different queries.

6.4.5. See problem 6.4.4.

6.4.6. See problems 6.4.4 and 6.4.5. Pay attention to identifying terms
(they are special medical terms, so use domain knowledge, e.g., medical
dictionary being assisted by a neuroradiologist).

Chapter 7

7.13.1. Check the validity of axioms defining a metric.

7.13.2. Let D = {d1,…,di,…,dn}, di ∈℘(T). Take | |di| − |dj| |, where |di| and
|dj| denote lengths (number of terms, cardinality) of documents.

7.13.3. Verify the validity of the axioms of a metric.

7.13.4. Verify the validity of the axioms of a linear space. (The answer is
no.)

7.13.5. Verify the validity of the axioms of a metric.

7.13.7. En is a Euclidean space; hence it is also a Hilbert space. The closed
subspaces of any Hilbert space form a lattice, and because En is finite, this
lattice is modular.

7.13.8. For example, col(W). Use the Gram-Schmidt procedure starting
from the columns of W. Use Example 7.11.

304 Solutions to Exercises and Problems

7.13.9. Verify the definition of a linear operator (Section 7.5). Verify
whether it is self-adjoint (Section 7.10).

Chapter 8

8.7.1. You should note different rankings depending on the weighting
scheme and similarity measure used.

8.7.2. Comment on the hit lists obtained as to their relevance to your re-
quest.

8.7.3. Observe whether length normalization has an effect on ranking.

8.7.4. Use Definition 8.1. Note that this also depends on the choice of
terms you use.

8.7.5. Use Theorem 8.4 and Definition 8.2.

Chapter 9

9.9.1. Write it, e.g., for the three- or two-dimensional case first. Then, gen-
eralize.

9.9.2. Use Eq. (9.4) for each column of W.

9.9.3. Use Eq. (9.6).

9.9.4. Use the corresponding definitions.

9.9.5. Apply technologies described in Chapter 4 and use the precision-
recall graph method.

9.9.6. Same as problem 9.9.5.

9.9.7. Same as problem 9.9.6.

9.9.8. For example, use a distribution function for term occurrences across
documents.

Solutions to Exercises and Problems 305

Chapter 10

10.7.1. fi / Σi fi.

10.7.2. Use the definition of probability measure (Section 10.1) and Eq.
(10.9).

Chapter 11

11.9.2. See Section 11.1 (in M, the entry is equal to a weight instead of 1).

11.9.3. See Section 11.1.1, and Chapter 4, for fitting the power law curve.

11.9.4. See the connectivity method (Section 11.2).

11.9.5. When retrieving, using the Boolean method, matching pages, de-
termine the frequency (number of occurrences) of query terms, and use
these in ranking.

11.9.7. Importance can be calculated in several ways. For example, if
pages have nonzero indegree, this can be used to rank them. Another way
is to apply the PageRank method with dangling pages.

11.9.8. Define matrix M for the method chosen, and then apply the
method.

11.9.9. See Section 11.6.2.

11.9.10. The weighted version is

−
−

=Ψ
i

i
i ss

ss
a

minmax

min ,

where ai is a weight reflecting the importance of method i.

11.9.11. Use the equation for the belief network method.

11.9.12. Show that Assumptions 1–4 are satisfied.

306 Solutions to Exercises and Problems

References

(Aberer and Wu 2003)

(Adamic 2003)

(Adamic and Huberman
2000)

(Albert 2000)

(Baeza-Yates 2003)

(Baeza-Yates and
Ribeiro-Neto 1999)

(Barabási et al. 2000)

(Belew 2000)

(Berry and Browne 1999)

(Birkhoff and von
Neumann 1936)

(Blair 2006)

Aberer, K., and Wu, J.: A framework for decentralized rank-
ing in Web information retrieval. In: APWeb, ed by Zhou, X.,
Zhang, Y., and Orlowska, M. E., Lecture Notes in Computer
Science, vol 2642 (Springer, Berlin/Heidelberg/New York,
2003), pp 213−226

Adamic, L. A.: Zipf, Power-laws, and Pareto—a ranking tu-
torial. http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html
(2003) Cited Dec. 18, 2003

Adamic, L. A., and Huberman, B. A.: Power-law distribution
of the World Wide Web. Science. 287, 2115a (2000)

Albert, R. (2000). Power Laws on Internet and World Wide
Web. Ph.D. dissertation, University of Notre Dame

Baeza-Yates, R.: Information retrieval in the Web: beyond
current search engines. International Journal of Approximate
Reasoning. 34, 97−104 (2003)

Baeza-Yates, R., and Ribeiro-Neto, B.: Modern Information
Retrieval (Addison Wesley Longman, 1999)

Barabási, A-L., Albert, R., and Jeong, H.: Scale-free charac-
teristics of random networks: the topology of the world-wide
web. Physica A. 281, 69−77 (2000)

Belew, K. K.: Finding Out About (Cambridge University
Press, Cambridge, UK, 2000)

Berry, W. M., and Browne, M.: Understanding Search En-
gines (SIAM, Philadelphia, 1999)

Birkhoff, G., and von Neumann, J.: The logic of quantum
mechanics. Annals of Mathematics. 37(4), 823−843 (1936)

Blair, D.: Back to the Rough Ground: Wittgenstein Philoso-
phy of Language (Springer, Berlin/Heidelberg/New York,
2006)

308 References

(Bollmann-Sdorra and
Raghavan 1993)

(Borlund 2003)

(Brin and Page 1998)

(Broder et al. 2000)

(Burris and
Sankappanavar 2000)

(Calado et al. 2003)

(Carpineto and Romano
2005)

(Carrière and Kazman
1997)

(Cheung and Vogel
2005)

(Chu and Rosenthal
1996)

(Clark and Willett 1997)

Bollmann-Sdorra, P., and Raghavan, V. V.: On the delusive-
ness of adopting a common space for modelling information
retrieval objects: are queries documents? Journal of the
American Society for Information Science. 44(10), 579−587
(1993)

Borlund, P.: The IIR evaluation model: a framework for
evaluation of interactive information retrieval systems.
Information Research. 8(3), 1−66 (2003)

Brin, S., and Page, L.: The anatomy of a large-scale hyper-
textual Web search engine. In: Proceedings of the 7th World
Wide Web Conference (Brisbane, Australia, April 14–18,
1998), pp 107−117

Broder, A., Kumar, R., Maghoul, F., and Raghavan, P.:
Graph structure in the Web. Computer Networks. 33,
309−320 (2000)

Burris, S., and Sankappanavar, H. P. A Course in Universal
Algebra (The Millennium Edition, 2000)

Calado, P., Ribeiro-Neto, B., and Ziviani, N.: Local versus
global link information in the Web. ACM Transactions of In-
ormation Systems. 21(1), 1−22 (2003)

Carpineto, C., and Romano, G.: Using concept lattices for
text retrieval and mining. In: Formal Concept Analysis, ed by
Ganter, B., et al., Lecture Notes in Artificial Intelligence, vol
3626 (Springer, Berlin/Heidelberg/New York, 2005), pp
161−170

Carrière, S. J., and Kazman, R.: WebQuery: searching and
visualizing the Web through connectivity. Computer Network
and ISDN Systems. 29, 1257−1267 (1997)

Cheung, K. S. K., and Vogel, D.: Complexity reduction in
lattice-based information retrieval. Information Retrieval. 8,
285−299 (2005)

Chu, H., and Rosenthal, A. U.: Search engines for the World
Wide web: a comparative study and evaluation methodology.
In: Proceedings of the 59th Annual Meeting of the American
Society for Information Science (Baltimore, 1996), pp
127−135

Clark, S. J., and Willett, P.: Estimating the recall
performance of Web search engines. ASLIB Proceedings.
49(7), 184−189 (1997)

References 309

(Cooper 1968)

(Cooper 1971)

(Cooper 1990)

(Crestani et al. 1998)

(Croft and Lafferty 2003)

(Croft and Ponte 1998)

(Cummins and
O’Riordan 2006)

(De Wilde 1996)

(Deerwester et al. 1990)

(Dewey 1929)

(Dominich 2001)

(Dominich 2002)

Cooper, W. S.: Expected search length: a single measure of
retrieval effectiveness based on the weak ordering action of
retrieval systems. American Documentation. 19, 30−41
(1968)

Cooper, W. S.: A definition of relevance for information re-
trieval. Information Storage and Retrieval. 7(1), 19−37
(1971)

Cooper, G. F.: The computational complexity of probabilistic
inference using Bayesian belief network. Artificial Intelli-
gence. 42(2–3), 393−405 (1990)

Crestani, F., Lalmas, M., and van Rijsbergen, C. J.: Informa-
tion Retrieval: Uncertainty and Logics (Springer, Berlin/
Heidelberg/New York, 1998)

Croft, W. B., and Lafferty, J.: Language Modelling for In-
formation Retrieval (Springer, Berlin/Heidelberg/New York,
2003)

Croft, W. B., and Ponte, J.: A language modeling approach to
information retrieval. In: Proceedings of 21st Annual In-
ternational Conference on Research and Development in
Information Retrieval ACM SIGIR (Aug. 24–28, Melbourne,
Australia, 1998), pp 275−281

Cummins, R., and O’Riordan, C.: Evolving local and global
weighting schemes in information retrieval. Information Re-
trieval. 9, 311−330 (2006)

De Wilde, P.: Neural Network Models (Springer, Berlin/
Heidelberg/New York, 1996)

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and
Harshman, R.: Indexing by latent semantic analysis. Journal
of the American Society for Information Science. 41,
391−407 (1990)

Dewey, J.: Experience and Nature (Open Court, La Salle, IL,
1929)

Dominich, S.: Mathematical Foundations of Information Re-
trieval (Kluwer, Dordrecht/Boston/London, 2001)

Dominich, S.: Paradox-free formal foundation of vector
space model. In: Proceedings of the ACM SIGIR Workshop
Mathematical/Formal Methods in Information Retrieval
MF/IR ’02 (University of Tampere, Tampere, Finland, Aug.
12–15, 2002), pp 43−48

310 References

 (Dominich 2003)

(Dominich and Kiezer
2005)

(Dominich and Kiezer
2007)

(Dominich et al. 2004)

(Dominich et al. 2005)

(Dominich et al. 2006)

(Doob 1994)

(Egghe 2000)

(Faloutsos et al. 1999)

(Farahat et al. 2006)

(Feldman and Ballard
1982)

 Dominich, S.: Connectionist interaction information re-
trieval. Information Processing and Management. 39(2),
167−194 (2003)

Dominich, S., and Kiezer, T.: Zipf-törvény, kis világ és
magyar nyelv. (Zipf law, small world, and Hungarian lan-
guage). Alkalmazott Nyelvtudomány, 1-2, 5−24 (2005) (in
Hungarian).

Dominich, S., and Kiezer, T.: A measure theoretic approach
to information retrieval. Journal of the American Society of
Information Science and Technology. 58(8), 1108−1122
(2007)

Dominich, S., Góth, J., Kiezer, T., and Szlávik, Z.: Entropy-
based interpretation of retrieval status value-based retrieval.
Journal of the American Society for Information Science and
Technology. 55(7), 613−627 (2004)

Dominich, S., Góth, J., Horváth, M., and Kiezer, T.: ‘Beauty’
of the World Wide Web: cause, goal, or principle. In: Pro-
ceedings of the European Conference on Information Re-
trieval ECIR ’05. Lecture Notes in Computer Science, vol.
3408 (Springer, Berlin/Heidelberg/New York, 2005), pp
67−81

Dominich, S., Tuza, Zs., and Skrop, A.: Formal theory of
connectionist Web retrieval. In: Soft Computing in Web
Retrieval, ed by Crestani, F. et al. (Springer,
Berlin/Heidelberg/New York, 2006), pp 161−194

Doob, J. L.: Measure Theory (Springer, Berlin/
Heidelberg/New York, 1994)

Egghe, L.: The distribution of n-grams. Scientometrics.
47(2), 237−252 (2000)

Faloutsos, M., Faloutsos, P., and Faloutsos, Ch.: On power-
law relationship of the Internet topology. In: Proceedings of
the ACM SIGCOMM (Cambridge, MA, 1999), pp 251−262

Farahat, A., Lofaro, T., Miller, J. C., Rae, G., and Ward, L.
A.: Authority rankings from HITS, PageRank, and SALSA:
existence, uniqueness, and effect of initialisation. SIAM
Journal of Computing. 27(4), 1181−1201 (2006)

Feldman, J. A., and Ballard, D. H.: Connectionist models and
their properties. Cognitive Science. 6, 205−254 (1982)

References 311

(Feynman et al. 1964)

(Fox and Shaw 1994)

(Fuhr 1992)

(Garfield 1955)

(Garfield 1972)

(Geller 1978)

(Godin et al.1989)

(Godin et al. 1998)

(Grinbaum 2005)

(Grossberg 1976)

(Grossman and Frieder
2004)

(Guilmi et al. 2003)

Feynman, R. P., Leighton, R. B., and Sands, M.: The Feyn-
man Lectures on Physics (Addison-Wesley, Reading, MA,
1964)

Fox, E. A., and Shaw, J. A.: Combination of multiple
searches. In: The 2nd Text Retrieval Conference, ed by
Harman, D. K. (NIST Publication 500215, Washington, DC,
US Government Printing Office. 1994), pp 243−252

Fuhr, N.: Probabilistic models in information retrieval. The
Computer Journal. 35(3), 243−255 (1992)

Garfield, E.: Citation indexes for science. Science. 108
(1955)

Garfield, E.: Citation analysis as a tool in journal evaluation.
Science. 471−479 (1972)

Geller, N.: On the citation influence methodology of Pinski
and Narin. Information Processing and Management. 14,
93−95 (1978)

Godin, R., Gecsei, J., and Pichet, C.: Design of a browsing
interface for information retrieval. In: Proceedings of the
12th International Conference on Research and Development
in Information Retrieval ACM SIGIR (Cambridge, MA,
1989), pp 32−39

Godin, R., Missaoui, R., and April, A.: Experimental com-
parison of navigation in a Galois lattice with conventional
information retrieval methods. International Journal of Man-
Machine Studies. 38, 747−767 (1998)

Grinbaum, A.: Information-theoretic principle entails or-
thomodularity of a lattice. Foundations of Physics Letters.
18(6), 563−572 (2005)

Grossberg, S.: Adaptive pattern classification and universal
recoding: I. Parallel development and coding of neural fea-
ture detectors. Biological Cybernetics. 23, 121−134 (1976)

Grossman, D. A., and Frieder, O.: Information Retrieval: Al-
gorithms and Heuristics (Springer, Berlin/Heidelberg/New
York, 2004)

Guilmi, C., Gaffeo, E., and Gallegati, M.: Power law scaling
in the world income distribution. Economics Bulletin. 15(6),
1−7 (2003)

312 References

(Gwizdka and Chignell
1999)

(Hays 1966)

(Heine 1999)

(Hopfield 1984)

(Ingwersen and Jarvelin
2005)

(James 1988)

(Jauch 1968)

(Kahng et al. 2002)

(Kalogeraki et al. 2002)

(Kim and Compton 2004)

(Kiyosi 2000)

Gwizdka, J., and Chignell, M.: Towards information retrieval
measures for evaluation of Web search engines. Technical
Report 99-01 (University of Toronto, 1999)

Hays, D. D.: Readings in Automatic Language Processing
(American Elsevier, New York, 1966)

Heine, M. H.: Measuring the effects of AND, AND NOT and
OR operators in document retrieval systems using directed
line segments. In: Proceedings of the Workshop on Logical
and Uncertainty Models for Information Systems, ed by
Crestani, F., and Lalmas, M. (University College, London,
July 5, 1999), pp 55−76

Hopfield, J. J.: Neurons with graded response have collective
computational properties like those of two-states neurons. In:
Proceedings of the National Academy of Sciences. 81,
3088−3092 (1984)

Ingwersen, P., and Jarvelin, K.: The Turn: Integration of In-
formation Seeking and Retrieval in Context (Springer,
Berlin/Heidelberg/New York, 2005)

James, W.: Psychology⎯briefer course. In: Neurocomput-
ing: Foundations of Research, ed by Anderson, J. A., and
Rosenfeld, E. (MIT Press, Cambridge, MA, 1988), pp
253−279

Jauch, J. M.: Foundations of Quantum Mechanics (Addison-
Wesley, Reading, MA, 1968)

Kahng, B., Park, Y., and Jeong, H.: Robustness of the inde-
gree exponent for the World Wide Web. Physical Review.
66(046107), 1−6 (2002)

Kalogeraki, V., Gunopulos, D., and Zeinalipour-Yazti, D.: A
local search mechanism for peer-to-peer networks. In: Pro-
ceedings of the 11th Conference on Information Knowledge
Management CIKM ’02 (Nov. 4–9, McLean, VA, 2002), pp
300−307

Kim, M., and Compton, P.: Evolutionary document man-
agement and retrieval for specialized domains on the web.
International Journal of Human-Computer Studies. 60,
201−241 (2004)

Kiyosi, I.: Encyclopedic Dictionary of Mathematics, Second
edition, The MIT Press, Cambridge-Massachusetts-London
(2000)

References 313

(Kleinberg 1999)

(Kneale and Kneale
1962)

(Knuth 2005)

(Koester 2005)

(Koester 2006a)

(Koester 2006b)

(Kolmogorov 1956)

(Korfhage 1997)

(Kowalski 1997)

(Kumar et al. 1998)

(Kurtz 1991)

(Lánczos 1970)

(Langville and Meyer
2005)

(Langville and Meyer
2006)

Kleinberg, J. M.: Authoritative sources in a hyperlinked envi-
ronment. Journal of the ACM. 46(5), 604−632 (1999)

Kneale, K., and Kneale, M.: The Development of Logic
(Oxford University Press, Oxford, 1962)

Knuth, K. H.: Lattice duality: the origin of probability and
entropy. Neurocomputing. 67, 245−274 (2005)

Koester, B.: Conceptual knowledge processing with Google.
In: Proceedings of the LWA 2005, Lernen Wissensent-
deckung Adaptivitat (Saarbrücken, 2005), pp 178−183

Koester, B.: Conceptual knowledge retrieval with FooCA:
improving Web search engine results with contexts and con-
cept hierarchies. In: Lecture Notes in Artificial Intelligence,
vol. 4065 (Springer, Berlin/Heidelberg/New York, 2006a),
pp 176−190

Koester, B.: FooCA Web information retrieval with formal
concept analysis (Verlag Allgemeine Wissenschaft, Mühltal,
2006b)

Kolmogorov, A.: Foundation of the Theory of Probability
(Chelsea, New York, 1956)

Korfhage, R. R.: Information Storage and Retrieval (Wiley,
New York, 1997)

Kowalski, G.: Information Retrieval Systems: Theory and
Implementation (Kluwer, Dordrecht/Boston/London, 1997)

Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A.:
Trawling the web for emerging cyber-communities. In: Pro-
ceedings of the WWW8 Conference (1998) http://www8.org/
w8-papers

Kurtz, M.: Handbook of Applied Mathematics for Engineers
and Scientists (McGraw-Hill, New York, 1991)

Lánczos, K.: Space through the Ages (Academic Press, Lon-
don, 1970)

Langville, A. N., and Meyer, C. D.: A survey of eigenvector
methods for information retrieval. SIAM Review. 47(1),
135−161 (2005)

Langville, A. N., and Meyer, C. D.: Google’s PageRank and
Beyond (Princeton University Press, Princeton, NJ, 2006)

314 References

(Leighton and Srivastava
1999)

(Le Quan Ha et al. 2003)

(Lempel and Moran
2001)

(Lesk 2007)

(Luhn 1966)

(Maron and Kuhns 1960)

(Martin and Reissner
1961)

(Meadow et al. 1999)

(Messai et al. 2006)

(Metzler and Croft 2004)

(Mooers 1959)

Leighton, H. V., and Srivastava, J.: First twenty precision
among World Wide Web search services. Journal of the
American Society for Information Science. 50(10), 882–889
(1999)

Le Quan Ha, Sicilia-Garcia, E. I., Ming, J., and Smith, F. J.:
Extension of Zipf's law to word and character N-grams for
English and Chinese. Computational Linguistics and Chinese
Language Processing. 1, 77−102 (2003)

Lempel, R., and Moran, S.: SALSA: the stochastic approach
for link-structure analysis. ACM Transactions on Information
Systems. 19(2), 131−160 (2001)

Lesk, M.: The Seven Ages of Information Retrieval.
http://www.ifla.org/VI/5/op/udtop5/udtop5.htm, Cited July
2007

Luhn, H. P.: Keyword-in-context index for technical litera-
ture (KWIC index). In: Readings in Automatic Language
Processing, ed by Hays, D. D. (American Elsevier, New
York, 1966), pp 159−167

Maron, M. E., and Kuhns, J.-L.: On relevance, probabilistic
indexing and information retrieval. Journal of the Associa-
tion for Computing Machinery. 7, 219−244 (1960)

Martin, W. T., and Reissner, E.: Elementary Differential
Equations (Addison-Wesley, Reading, MA, 1961)

Meadow, C. T., Boyce, B. R., and Kraft, D. H.: Text Infor-
mation Retrieval Systems (Academic Press, San Diego, CA,
1999)

Messai, N., Devignes, M-D., Napoli, A., and Smail-Tabbone,
M.: BR-explorer: an FCA-based algorithm for information
retrieval. In: Proceedings of the 4th International Conference
on Concept Lattices and Their Applications, Oct. 30
(Hammamet, Tunisia 2006) http://hal.inria.fr/inria-0010391/en/

Metzler, D., and Croft, W. D.: Combining the language
model and inference model approaches to retrieval. Informa-
tion Processing and Management. 40, 735−750 (2004)

Mooers, C. N.: A mathematical theory of language symbols
in retrieval. In: Proceedings of the International Conference
on Scientific Information (Washington, DC, 1959), pp
1327−1352

References 315

(Ng et al. 2001)

(Nielson 1993)

(Over et al. 2007)

(Pearl 1988)

(Pennock et al. 2002)

(Piziak 1978)

(Ponte and Croft 1998)

(Priss 2000)

(Rajapakse and Denham
2006)

(Recski 1989)

(Rédei 1996)

(Robertson 1977)

Ng, A. Y., Zheng, A. X., and Jordan, M. I.: Link analysis, ei-
genvectors and stability. In: Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence IJCAI-01
(2001) http://robotics.stanford.edu/~ang/papers/ijcai01-
linkanalysis.pdf (cited 2007)

Nielson, J.: Usability Engineering. (Academic Press, San
Diego, CA, 1993)

Over, D. E., Hadjichristidis, C., Evans, J. St. B. T., and
Sloman, S. A.: The probability of causal conditionals. Cogni-
tive Psychology. 54 (1), pp 62–97 (2007) (in press)

Pearl, J.: Probabilistic Reasoning in Intelligent Systems:
Networks and Plausible Inference (Morgan Kaufmann, Palo
Alto, CA, 1988)

Pennock, D. M., Flake, G. W., Lawrence, S., Glover, E., and
Giles, L.: Winners don’t take all: characterizing the competi-
tion for links on the Web. In: Proceedings of the New York
Academy of Sciences. 99(8), pp 5207−5211 (2002)

Piziak, R.: Orthomodular lattices and quantum physics.
Mathematics Magazine. 51(5), 299−303 (1978)

Ponte, J. M., and Croft, W. B.: A language modeling ap-
proach to information retrieval. In: Proceedings of the 21st
Annual International Conference on Research and Develop-
ment in Information Retrieval ACM SIGIR (Melbourne,
1998), pp 275−281

Priss, U.: Lattice-based information retrieval. Knowledge
Organisation. 27(3), 132−142 (2000)

Rajapakse, R. K., and Denham, M.: Text retrieval with more
realistic concept matching and reinforcement learning. In-
formation Processing and Management. 42, 1260−1275
(2006)

Recski, A.: Matroid Theory and its Applications in Electric
Network Theory and in Statics (Springer Verlag and
Akadémiai Kiadó, Budapest, 1989)

Rédei, M.: Why John von Neumann did not like the Hilbert
space formalism of quantum mechanics. Studies in the His-
tory and Philosophy of Modern Physics. 27, 493−510 (1996)

Robertson, S.: The probability ranking principle in IR. Jour-
nal of Documentation. 33, 294–304 (1977)

316 References

(Robertson 2002)

(Robertson and Sparck-
Jones 1977)

(Robertson et al. 1982)

(Salton 1966)

(Salton 1971)

(Salton 1986)

(Salton and Buckley
1988)

(Salton and Lesk 1968)

(Salton and McGill 1983)

(Salton et al. 1974)

(Salton et al. 1975a)

(Salton et al. 1975b)

Robertson, S. E.: On Bayesian models and event spaces in
IR. Proceedings of the ACM SIGIR MF/IR Workshop on
Mathematical/Formal Methods in Information Retrieval
(Tampere, Finland, 2002) http://www.dcs.vein.hu/CIR Cited
2007

Robertson, S. E., and Sparck-Jones, K.: Relevance weighting
of search terms. Journal of the American Society for Infor-
mation Science. 27(3), 129−146 (1977)

Robertson, S. E., Maron, M. E., and Cooper, W. S.: Probabil-
ity of relevance: a unification of two competing models for
document retrieval. Information Technology: Research and
Development. 1, 1−21 (1982)

Salton, G.: Automatic phrase matching. In: Readings in
Automatic Language Processing, ed by Hays, D. D. (Ameri-
can Elsevier, New York, 1966), pp 169−189

Salton, G.: The SMART Retrieval System—Experiment in
Automatic Document Processing (Prentice-Hall, Englewood
Cliffs, NJ, 1971)

Salton, G.: Another look at automatic text-retrieval systems.
Communications of the ACM. 29(7), 648−656 (1986)

Salton, G., and Buckley, C.: Term-weighting approaches in
automatic text retrieval. Information Processing and Man-
agement. 24(5), 513−523 (1988)

Salton, G., and Lesk, M.E.: Computer evaluation of indexing
and text processing. Journal of the Association for
Computing Machinery. 15(1), 8−36 (1968)

Salton, G., and McGill, M.: Introduction to Modern Informa-
tion Retrieval (McGraw Hill, New York, 1983)

Salton, G., Yang, C. S., and Yu, C. T.: Contribution to the
Theory of Indexing. Information Processing 74 (North Hol-
land, Amsterdam, 1974), pp 584−590

Salton, G., Wong, A., and Yang, C. S.: A vector space model
for automatic indexing. Communications of the ACM. 18(11),
613−620 (1975a)

Salton, G., Yang, C. S., and Yu, C. T.: Theory of term impor-
tance in automatic text analysis. Journal of the American So-
ciety for Information Science. 26(1), 33−44 (1975b)

References 317

(Savoy and Debois 1991)

(Shafi and Rather 2005)

(Shannon and Weaver
1949)

(Shiodde and Batty 2000)

(Silva et al. 2004)

(Silverstein et al. 1998)

(Simmonds 1982)

(Skobeltsyn et al. 2007)

(Smith and Devine 1985)

(Song and Croft 1999)

(Spink and Cole 2005)

(Stalnaker 1968)

Savoy, J., and Desbois, D.: Information retrieval in hypertext
systems: an approach using Bayesian networks. Electronic
Publishing. 4(2), 87−108 (1991)

Shafi, S. M., and Rather, R. A.: Precision and Recall of Five
Search Engines for Retrieval of Scholarly Information in the

Shannon, C. E., and Weaver, W.: The Mathematical Theory
of Communication (University of Illinois Press, Urbana, IL,
1949)

Shiode, N., and Batty, M. (2000). Power Law Distribution in
Real and Virtual Worlds. http://www.isoc.org/inet2000/
cdproceeedings/2a/2a_2.htm (Cited Dec. 18, 2003)

Silva, I. R., de Souza, J. N., and Santos, K. S.: Dependence
among terms in vector space model. In: Proceedings of the
International Database Engineering and Applications Sym-
posium (2004), pp 97−102

Silverstein, C., Henzinger, M., Marais, J., and Moricz, M.:
Analysis of a very large Altavista query log (Technical
Report 1998-014, COMPAQ Systems Research Center, Palo
Alto, CA, 1998)

Simmonds, J. G.: A Brief on Tensor Analysis (Springer,
Berlin/Heidelberg/New York, 1982)

Skobetltsyn, G., Luu, T., Zarko, I. P., Rajman, M., and
Aberer, K.: Query-driven indexing for peer-to-peer text re-
trieval. In: Proceedings of the WWW 2007 Conference. (May
8–12, Banff, Alberta, 2007), pp 1185−1186

Smith, F. J., and Devine, K.: Storing and retrieving word
phrases. Information Processing and Management. 21(3),
215−224 (1985)

Song, F., and Croft, W. B.: A general language model for in-
formation retrieval. In: Proceedings of CIKM ’99 (Kansas
City, MO, 1999), pp 316−321

Spink, A., and Cole, C.: New Directions in Cognitive Infor-
mation Retrieval (Springer, Berlin/Heidelberg/New York,
2005)

Stalnaker, R.: A theory of conditionals. American Philoso-
phical Quarterly Monograph Series. 2, 98−112 (1968)

Field of Biotechnology. Webology. 2(2) (2005). http://www.
webology.ir/2005/v2n2/a12.html

318 References

(Strogatz 2001)

(Su 1994)

(Su et al. 1998)

(Tait 2005)

(Tang and Sun 2003)

(Thelvall and Vaughan
2004)

(Thorndike 1937)

(Tsikrika and Lalmas
2004)

(Turtle and Croft 1991)

(Ullman 1980)

(Van Rijsbergen 1979)

(Van Rijsbergen 1992)

(Van Rijsbergen 2004)

Strogatz, S. H.: Exploring complex networks. Nature. 410,
268−276 (2001)

Su, L. T.: The relevance of recall and precision in user
evaluation. Journal of the American Society of Information
Science. 45(3), 207−217 (1994)

Su, L. T., Chen, H. L., and Dong, X. Y.: Evaluation of Web-
based search engines from an end-user’s perspective: a pilot
study. In: Proceedings of the 61st Annual Meeting of the
American Society for Information Science (Pittsburgh, PA,
1998) pp 348−361

Tait, J.: Charting a New Course: Natural Language Process-
ing and Information Retrieval. Essays in Honour of Karen
Sparck-Jones (Springer, Berlin/Heidelberg/New York, 2005)

Tang, M. C., and Sun, Y.: Evaluation of Web-based search
engines using user-effort measures. LIBRES. 13(2), (2003)
(electronic journal)

Thelwall, M., and Vaughan, L.: New versions of PageRank
employing alternative Web document models. ASLIB Pro-
ceedings. 56(1), 24−33 (2004)

Thorndike, E. L.: On the number of words of any given fre-
quency of use. Psychological Record. 1, 399–406 (1937)

Tsikrika, T., and Lalmas, M.: Combining evidence for Web
retrieval using the inference network model: an experimental
study. Information Processing and Management. 40(5),
751−772 (2004)

Turtle, H., and Croft, W. B.: Evaluation of an inference net-
work-based retrieval model. ACM Transactions on Informa-
tion Systems. 9(3), 187−222 (1991)

Ullman, J. D.: Principles of Database Systems (Computer
Science Press, New York, 1980)

Van Rijsbergen, C. J.: Information Retrieval (Butterworth,
London, 1979)

Van Rijsbergen, C. J.: Probabilistic retrieval revisited. The
Computer Journal. 35(3), 291−298 (1992)

Van Rijsbergen, C. J.: The Geometry of IR (Cambridge Uni-
versity Press, Cambridge, 2004)

References 319

(Vegas et al. 2007)

(Wang and Klir 1991)

(Weiss 1995)

(Wellish 1991)

(Widdows 2003)

(Widdows 2004)

(Widdows and Peters
2003)

(Wille 2005)

(Wolff 1993)

(Wong and Raghanavan
1984)

(Wong et al. 1985)

(Yang and Chen 1996)

Vegas, J., Crestani, F., and de la Fuente, P.: Context repre-
sentation for web search results. Journal of Information Sci-
ence. 33(1), 77−94 (2007)

Wang, Z., and Klir, G. J.: Fuzzy Measure Theory (Plenum
Press, New York, 1991)

Weiss, M.A.: Data Structures and Algorithm Analysis
(Benjamin/Cummings, New York/Amsterdam, 1995)

Wellish, H.: Indexing from A to Z (H. W. Wilson 1991)

Widdows, D.: Orthogonal negation in vector space for mod-
elling word-meanings and document retrieval. In: Proceed-
ings of the 41st Annual Meeting of the Association for Com-
putational Linguistics (Sapporo, Japan, 2003), pp 136−143

Widdows, D.: Geometry and Meaning (CSLI, Stanford,
2004)

Widdows, D., and Peters, S.: Word vectors and quantum
logic—experiments with negation and disjunction. In: Pro-
ceedings of Mathematics of Language, ed by Oehrle, R. T.,
and Rogers, J. (Bloomington, IN, 2003), pp 141−154

Wille, R.: Formal concept analysis as mathematical theory of
concepts and concept hierarchies. In: Formal Concept Analy-
sis, ed by Ganter, B., et al. Lecture Notes in Artificial Intelli-
gence LNAI vol. 3626 (Springer, Berlin/Heidelberg/New
York, 2005), pp 1−33

Wolff, K. E.: A first course in formal concept analysis. In:
SoftStat’93 Advances in Statistical Software, ed by Faul-
baum, F., 4, 429−438 (1993)

Wong, S. K. M., and Raghavan, V. V.: Vector space model
of information retrieval—a re-evaluation. In: Proceedings of
the 7th ACM SIGIR International Conference on Research
and Development in Information Retrieval (Kings College,
Cambridge, UK, 1984), pp 167−185

Wong, S. K. M., Ziarko, W., and Wong, P. C. N.: General-
ized vector space model in information retrieval. In: Pro-
ceedings of the 8th ACM SIGIR International Conference on
Research and Development in Information Retrieval (ACM
Press, New York, 1985), pp 18−25

Yang, A., and Chen, P. P.: Efficient data retrieval and ma-
nipulation using Boolean entity lattice. Data and Knowledge
Engineering. 20, 211−226 (1996)

320 References

(Yu et al. 1989)

(Yule 1924)

(Zimmerman 1996)

(Zipf 1949)

Yu, C. T., Meng, W., and Park, S.: A framework for effective
retrieval. ACM Transactions on Database Systems. 14(2),
147−167 (1989)

Yule, G. U.: A mathematical theory of evaluation, based on
the conclusions of Dr. J.Willis FRS. Philosophical Transac-
tions. 213−221 (1924)

Zimmerman, H.-J.: Fuzzy Set Theory⎯and Its Applications
(Kluwer, Norwell-Dordrecht, 1996)

Zipf, G.: Human Behavior and the Principle of Least Effort
(Addison-Wesley, Reading, MA, 1949)

Index

1-element lattice, 49, 107
2-element lattice, 49, 109, 110
3-element lattice, 49
4-element lattices, 49
5-element lattices, 49

Absorption of the complement, 59
Activation level, 263
Additivity, 200, 201, 208
Adjacency matrix, 113, 238, 249, 256,

257, 259, 260
Aggregated method, 25, 237,

274–282, 292
Algebra, 200
Algebraic product, 195, 199–201, 205,

207, 212
Angle ϕ between vectors, 146
Antisymmetry, 42
Approximation error, see Power Law
Approximation method, 68, 251
‘Artificial concepts’, 188, 189, 191
Artificial neural networks, 263–266
Artificial neuron, 263, 264, 266, 267
Association, 188, 268
Associative interaction method, 12,

263–270, 299
Authority

matrix, 256, 261
side, 261
weight, 255, 259–261

Banach space, 135, 143–145
Basis

of subspace, 148, 151
tensor, 180

Bayes’s decision rule, 215, 219, 221
Bayes’s theorem, 215, 218, 220, 228
Bayesian networks, 215, 272

Belief, 25, 179, 208, 217, 226, 227, 230,
231, 233, 234, 272

Bijective function, 119
Binary term-document matrix, 128
Binet’s formula, 246
Boolean algebra, 18, 19, 45, 59–61, 106,

107, 117, 129, 131, 132, 152, 153,
157, 159, 172, 175, 176, 216,
227–229, 297

Boolean algebra of query terms, 297
Boolean retrieval, 11, 23, 125–132, 167,

247, 293
Breadth-first-search, 292, 294
BR-Explorer, 22, 105, 115

Canonical form, 187
Cardinality, 37, 38
Cardinality of fuzzy set, 24, 199, 200,

202, 205
Cardinality of powerset, 37
Cartesian product of sets, 36
Cauchy-Lipschitz theorem, 265
Cauchy principle of convergence, 138,

139, 144
Chain, 25, 172, 237, 283, 284
Characteristic equation, 186, 187
Characters with logic, 108
χ2-test, 244
Citation analysis, 246, 247
Clan, 1, 46, 200, 201
Closed subspace, 135, 148, 152, 168,

170, 175
Codomain, 39
Column space, 148
Combined importance function,

275–277
Combined importance methods, 271
Compatible subspaces, 153

322 Index

Complemented
complement of, 56
orthocomplemented, 57, 58, 175

Complement of query, 170
Completely additive, 207
Completely ordered set, 283
Complete space, 135
Complete system of events, 217, 218
Complexity, 7, 43, 83, 117
Concept, 112, 113
Concept lattice

not modular, 121, 123
Conditional, 229
Conditional probability, 25, 205, 215, 217,

220, 224, 227, 230, 231
Confidence, 245
Confidence index, 198
Conjunction, 18, 27, 29–32, 60, 108–110,

123, 127, 159, 176
Connectivity, 25, 237, 271, 277
Connectivity method, 12, 247
Content-based evidence, 270–273
Content structure, 84
Convergent, 137–139, 142, 144, 146, 168
Convex set, 142
Coordinate axes, 182, 192
Correlation matrix, 191
Cosine measure, 164, 272, 294
Counterfactual, 229

Dangling page, 252, 253
Deductive reasoning, 229
Degree distribution, 25, 237, 239–246
Degree exponent, 239–241, 244–246
Degree of ordering, 228
Degree of relevance, 160
De Morgan’s laws, 31, 38, 57, 58, 60
Depth-first-search, 292
Derivation operations, 112
d-graph, 130
Dice coefficient measure, 164
Difference of sets, 35
Dimension, 141, 182, 188, 189, 191, 193
Direct sum, 142, 153, 166
Disjoint sets, 35, 200
Disjunction, 18, 23, 27, 30, 32, 60, 109,

110, 123, 127, 159, 166, 167

Disjunctive normal form, 126
Distance, 136, 138, 140, 144, 146
Distributive lattice, 45, 53–56, 59, 61,

106, 107, 123, 129, 215, 216,
227–230

Distributive law, 21, 46, 152, 153,
167, 176

DocBall, 26, 237, 290, 291
Document, 196
Document lattice, 109, 115, 117, 129, 176
Domain, 39, 111, 240–244, 256, 272, 279
Dominant eigenvalue, 251, 253, 256, 261
Dominant eigenvectors, 261
Dot product measure, 164
Duality, 45, 46, 48

Effectiveness
measures, 65, 87–89, 95
surface, 94–97

Efficient Boolean method, 129
Eigenvalue, 168, 186–188, 248, 251, 253,

256, 257, 259, 261
Eigenvector, 186, 187, 248, 251–253, 256,

257, 259, 261
Embedded lattice, 120
Empty set, 32, 33, 37, 38, 284
Entailment, 229
Entity-relationship model, 129
Equality of sets, 34
Equilibrium, 266
Equivalence

classes, 43, 61, 73
relation, 27, 38, 41, 43, 47

Euclidean distance, 136, 138, 146
Euclidean length, 146
Euclidean space, 94, 135, 146–148, 160,

162, 169, 175, 180–182, 186, 197
Event, 216
Event space, 215, 216, 226, 227
Evidence, 25, 189, 231, 232, 234, 237,

270–273
Evolution in time, 211
Existential quantifier, 33
Expected mutual information

measure, 198
Extension, 112
Extent, 76, 81, 82, 99, 112, 192

Index 323

Facet, 111, 118
FaIR system, 110, 111, 118
Fallout, 88, 89, 90, 94, 97, 98
Fibonacci numbers, 246
Field, 7, 11, 18, 46, 139, 200, 201, 207
FooCA, 22, 105, 116
Formal concept, 112, 113, 116, 230
Formal context, 112, 113, 115, 116
Free will, 24, 173, 176
Frequency-based probability, 204,

205, 275
Frequentist view, 216
Function, 40
Fuzzy algebra, 24, 179–211, 274
Fuzzy clan, 201
Fuzzy complement, 195, 201
Fuzzy entropy, 24, 179, 203, 204, 206,

209, 210
Fuzzy intersection, 195, 199, 205, 212
Fuzzy Jordan measure, 200–204
Fuzzy probability, 24, 179, 203–206, 209,

210, 274–276, 278
Fuzzy set, 6, 24, 179, 193–196, 200–205,

208, 275
Fuzzy union, 195, 200, 201, 208, 212

General Cartesian basis, 180
Generalized vector space model, 191
Generic differential equation, 264
Geometry of space, 153
Global ranking, 25, 26, 237, 284–288
Global ranking method, 26, 286–288
Gnutellanet, 293
Golden Section, 245, 246, 296
Good-Turing estimate, 224
Gram-Schmidt procedure, 135, 151, 167

Hasse diagram, 45, 48–50, 55, 57, 59,
114, 130, 131

High degree seeking, 294
Hilbert lattice, 165–168, 174
Hilbert space, 36, 145–149, 152, 153, 157,

159, 168, 169, 172, 174, 175
Hub, 255
Hub matrix, 256, 261
Hub side, 261
Hub weight, 255, 259–261

Identity function, 263
Impact factor, 12, 25, 237, 247, 271
Implication, 25, 27, 30–32, 45, 61, 215,

227, 229–231
Indegree, 238–240, 247, 261
Independent events, 215, 217, 221
Indicative conditional, 229
Inductive reasoning, 229, 230
Inference

network, 6, 25, 231, 274
Injective function, 40
Inlink distribution, 242
Inputs, 263, 264
Integral, 209–211
Integral of the ranking function, 210
Intelligent search mechanism, 294
Intension, 112
Intent, 112
Interaction, 6, 12, 117, 237, 263–270
Intercept, 67, 68, 240
Intersection of sets, 35
Inverted file structure

index table, 74, 75
master file, 74, 75

In vivo measurement of relevance
effectiveness, 279

Jaccard coefficient measure, 164
Jeffrey’s Rule of Conditioning, 227
Jelinek-Mercer smoothing, 225
Join, 46–48, 51, 111, 121, 166, 175, 282,

284, 286, 289, 292, 297
Jordan measure, 200, 201, 208

Kronecker delta, 147

Language model, 1, 6, 12, 25, 205,
215, 234

Language model of information retrieval,
224–226

Largest element
lattice, 50

Lattice
absorption, 38, 46, 53–55, 59
associativity, 34, 35, 46, 54, 139
atom, 51, 113, 118
atomic, 50, 51, 117, 118, 152

324 Index

atomistic, 51, 170
Boolean, 132, 167, 176, 226, 228
commutativity, 34, 35, 46, 53–55,

139, 228
complemented, 56, 57, 61
complete, 50, 112
distributive, 45, 53–56, 59, 61, 106,

107, 123, 129, 215, 216, 227–230
idempotency, 34, 35, 46, 58
isomorphic, 119, 121–123
modular, 51–54, 171, 175
modular pair, 122, 123
orthomodular, 56–59, 152, 175
pentagon, 50–52, 54, 56, 119–122
sublattice, 53, 55, 119, 121, 122,

170, 171
Lattice of projectors, 153
Law of contradiction, 29
Law of contraposition, 31, 54
Law of double negation, 29
Law of excluded third, 30
Left singular vector, 188, 259
Lexical root, 73
Lexical unit, 66
Limit, 137
Linear combination, 141, 151, 180, 197,

263, 264
Linearly dependent, 141
Linearly independent, 141, 151, 187
Linear operator, 135, 142, 143, 145, 149,

154, 173
Linear space, 1, 12, 24, 46, 135, 139–145,

158, 161, 173, 174, 179, 192, 193,
196, 197

Link analysis, 5, 11, 25, 237, 246, 282,
287, 288

Link-based evidence, 270, 272
Link structure

analysis, 246–249
Logical implication, 25, 30, 45, 61, 215,

227, 229, 231
Logit, 219
Log-log plot, 67, 239, 243
Lower bound of subset, 47, 48

Mapping (Vector Space Retrieval),
168–173

Material conditional, 31, 229, 230

Mathematical logic, 5, 11, 12, 23, 25, 27,
28, 38, 60, 109, 110, 123, 126, 167,
175, 176, 229

Matrix of projector, 150, 154
Maximum spanning tree, 199
Mean average precision, 92, 158, 206,

207, 225
Meaning of words, 165
Meet, 46–48, 113, 115, 121, 175, 282,

284, 286, 289, 292, 297
Membership function, 193–195, 197, 200,

202, 208, 275, 278, 279
Metasearch engine

Interface module, 86
Ranking module, 80, 85–87, 279
Repository, 79, 80, 84–87, 293, 296

Metric, 135
Metric induced by the norm, 144
Metric space, 136–139, 144, 146
Metric tensor, 181, 182, 191
M-L-S method, 99–102
Monotonicity of measure, 208
Mutual citation method, 12, 247, 248
Mutually exclusive events, 217

Napster, 293
Negation, 29
Negation method, 166
Nonlinear optimization problem, 68
Nonnegativity, 201
Nontrivial solutions, 249, 251
Norm, 144–146
Normalized fuzzy set, 194
Normed (linear) space, 144
Null hypothesis, 245
Null space, 148

Okapi belief score, 233
Okapi-BM25 formula

weight, 79
Operation of ANN, 266
Optimal retrieval hypothesis, 220, 222, 223
Ordering relation, 42, 47, 50, 61, 112
Orthocomplementation, 45, 153
Orthogonal complement, 147, 148, 152,

168–170, 173
Orthogonal vectors, 147, 148, 165, 170,

180, 184

Index 325

Orthomodular lattice, 56–59, 152, 175
Orthonormal basis, 135, 147, 151, 167,

180, 181, 183–185, 191, 206
Outdegree

distribution, 241
Overlap coefficient measure, 164

P2P, 292, 293, 295, 296, 298
PageRank method, 12, 249–254, 277, 279
Pareto’s law, 239
Partial derivatives, 68
Partially ordered set, 42
Partitioning lattice, 130
Partition of a set, 42
Peer-to-peer, 292
“Phenomenologically given” quality, 175
Physical concept, 192
Pointlike particles, 211
Population, 244, 245
Porter algorithm, 73
Poset

infimum, 47, 50, 112, 283
supremum, 47, 50, 52, 112, 283, 297

Power Law
exponent, 67, 242–245, 295
least squares method, 68, 69
regression line method, 69
Zipf’s Law, 67, 70

Power method, 252, 253
Powerset, 37, 45, 47, 50, 55, 56, 106,

152, 153
Precision, 88, 89
Predicate, 32, 41, 45, 60
Preordering relation, 43
Principle of invariance, 24, 179, 192, 193,

210, 211
Principle of least effort, 71
Principle of noncontradiction, 28
Principle of object invariance, 192, 193
Probabilistic retrieval, 25, 215–234,

272, 274
Probability, 216
Probability of the conditional, 230
Probability ranking principle, 215, 218,

219, 226
Product lattice, 107, 109, 131, 132, 286
Projection of vector, 149, 150, 165
Projection theorem, 135, 147–149, 150

Projector, 135–153, 157, 168, 169,
172, 175

Proper subset, 33
Properties of set intersection, 35, 60, 106,

127, 205
Properties of set operations, 38
Properties of set union, 18, 34, 60, 106,

127, 176
Proposition, 28, 29
Pseudometric, 136, 137
Pseudonorm, 143

Quantifier, 33
Quantum logic, 159, 174
Quantum mechanics, 6, 21, 24, 147, 150,

157, 174–177
Query lattice, 110, 115, 117, 157,

171–173, 176, 297, 298
Query refinement, 116, 117

Random breadth first search, 294
Ranking, 284
Ranking function, 209, 210, 287, 288
Rayleigh quotient, 252
Reasoning, 18, 21, 23, 24, 28, 123, 125,

229, 230
Recall, 89
Reciprocal basis tensor, 180
Reflexivity, 41, 42
Regression method

correlation coefficient, 67, 69, 240,
241, 243

Regular matrix, 186, 187
Relation, 39
Relations theory, 12, 27, 38–43
Relative frequency, 215, 216
Relevance, 87
Relevance assessment, 23, 93, 157,

167, 168
Relevance effectiveness

20 full precision, 98
fallout, 88–90, 94, 97, 98
first n-precision, 99
F-measure, 90
Heine measure, 90
interpolation, 92
MAP, 92
Meadow measure, 90

326 Index

measure, 91
P@n, 92
precision, 89
precision-recall graph, 13, 65, 91–93
recall, 89
relative precision, 102, 103
relative recall, 99, 102
RP method, 102, 103, 105
R-prec, 92
search engine, 98, 99
test collection, 91–93
Vickery measure, 90

Relevance feedback, 115, 159, 222,
223, 228

Retrieval system
general architecture, 79, 80
hit list, 80
indexing module, 80
query module, 80
ranking module, 80
repository, 79

Reverberative circle, 268, 269
Right singular vectors, 188, 259
Rnorm, 88, 91
RP method, 102, 103

Scalar, 139
Scalar (or inner or dot) product, 145, 146,

158, 165, 167, 173, 174, 179–186,
191–193, 196

Scoring functions, 234
Search engine

crawler module, 84, 85
indexes, 84
indexing module, 80, 84, 85
query module, 80, 85
ranking module, 80, 85–87
repository, 79, 80, 84–86, 293, 296
snippet, 85, 116

Self-adjoint operator, 145, 149, 173
Sequence, 137–139
Set, 32, 33
Set complement, 37, 106, 153
Sets theory, 24
σ-algebra, 207, 209, 230
Sigmoid function, 263
Similarity measure, 157, 163, 164, 179,

182–186

Simple function, 209, 210
Singular value decomposition, 188,

190, 259
Singular values, 188, 259
Slope, 67, 68
Smallest element

lattice, 50, 115
Smoothing, 224–226
Snippet, 85, 116
Spearman footrule, 287
Spreading of activation, 268
Squared error, 68
Standard, 195
Standard deviation, 244
State, 263–266
Stemming, 73, 74
Stoplist

TIME, 72, 82
Strings, 211
String theory, 210, 211
Strongly connected, 250, 252
Subjectivist view, 217
Submodularity, 284, 286
Submodular lattice function, 172
Subset, 33
Subspace

closed, 148, 152, 168, 170, 175
lattice, 153, 170
projectors, 135, 152
spanned by S, 151

Surjective function, 40
SVD and HITS connection, 259
Symmetry, 41, 136
System of differential equations, 265
System of linear equations, 148, 150,

187, 249

Term, 196
dependencies, 183, 186, 191, 199
discrimination using entropy, 297
discrmination model, 296
discrmination value, 296, 297
term-document matrix, 76–79, 113, 114
hierarchy, 107, 108
independence assumption, 221, 224

Test collections, 91–93, 95, 97, 104, 115,
158, 206, 207, 210, 213, 271

The most results in past, 294

Index 327

Threshold function, 263
Total probability formula, 218
Transfer function, 263, 264
Transitivity, 41, 42, 217
Triangle inequality, 136
Truth value, 28, 29, 31, 126, 229

Union of events, 217, 218
Union of sets, 34
Unique complement

lattice, 59–61
Universal quantifier, 33
Upper bound of subset, 47

Vector
coordinates, 141, 174, 180, 182, 184,

185, 197, 198
space, see Linear space

Vector space retrieval, 12, 23, 24, 157–165,
168–176, 179, 182, 186, 191, 271

Weak distributivity, 51, 53
Web, 237
Web graph, 25, 26, 237–239, 249, 251,

260, 261, 275

Web lattice, 25, 237, 282, 284,
286–288

Web pages, 8, 11, 26, 44, 66, 80–84, 86,
87, 237–241, 243, 246, 249, 255,
266, 267, 270–272, 274–277, 279,
282, 283, 292

Web sites, 282, 292
Weight

binary, 76, 173, 222
frequency, 76, 194, 206, 210,

268, 279
length-normalized, 78, 279
length normalized term frequency

inverse document frequency, 79
max-normalized, 78
term frequency inverse document

frequency, 78, 79
Weight of term, 76, 154, 160, 188, 196,

204, 206, 275
Winner-take-all, 266
World-Wide Web, 80

HTML, 80, 81, 83, 84, 279
tag, 81

Z-score(μ), 245

The Information Retrieval Series

Gerald Kowalski. Information Retrieval Systems: Theory and Implementation.
ISBN 0-7923-9926-9

Gregory Grefenstette. Cross-Language Information Retrieval. ISBN 0-7923-8122-X

Robert M. Losee. Text Retrieval and Filtering: Analytic Models of Performance.
ISBN 0-7923-8177-7

Fabio Crestani, Mounia Lalmas, and Cornelis Joost van Rijsbergen. Information
Retrieval: Uncertainty and Logics: Advanced Models for the Representation and
Retrieval of Information. ISBN 0-7923-8302-8

Ross Wilkinson, Timothy Arnold-Moore, Michael Fuller, Ron Sacks-Davis, James Thom,
and Justin Zobel. Document Computing: Technologies for Managing Electronic
Document Collections. ISBN 0-7923-8357-5

Marie-Francine Moens. Automatic Indexing and Abstracting of Document Texts. ISBN
0-7923-7793-1

W. Bruce Croft. Advances in Informational Retrieval: Recent Research from the
Center for Intelligent Information Retrieval. ISBN 0-7923-7812-1

Gerald J. Kowalski and Mark T. Maybury. Information Storage and Retrieval Systems:
Theory and Implementation, Second Edition. ISBN 0-7923-7924-1

Jian Kang Wu, Mohan S. Kankanhalli, Joo-Hwee Lim, Dezhong Hong. Perspectives on
Content-Based Multimedia Systems. ISBN 0-7923-7944-6

George Chang, Marcus J. Healey, James A.M. McHugh, Jason T.L. Wang. Mining the
World Wide Web: An Information Search Approach. ISBN 0-7923-7349-9

James Z. Wang. Integrated Region-Based Image Retrieval. ISBN 0-7923-7350-2

James Allan. Topic Detection and Tracking: Event-based Information Organiza-
tion. ISBN 0-7923-7664-1

W. Bruce Croft, John Lafferty. Language Modeling for Information Retrieval. ISBN
1-4020-1216-0

Yixin Chen, Jia Li and James Z. Wang. Machine Learning and Statistical Modeling
Approaches to Image Retrieval . ISBN 1-4020-8034-4

David A. Grossman and Ophir Frieder. Information Retrieval: Algorithms and
Heuristics. Second edition; ISBN 1-4020-3003-7; PB: ISBN 1-4020-3004-5

John I. Tait. Charting a new Course: Natural Language Processing and Information
Retrieval. ISBN 1-4020-3343-5

Udo Kruschwitz. Intelligent Document Retrieval: Exploiting Markup Structure.
ISBN 1-4020-3767-8

Peter Ingwersen, Kalervo Jrvelin. The Turn: Integration of Information Seeking and
Retrieval in Context. ISBN 1-4020-3850-X

Amanda Spink, Charles Cole. New Directions in Cognitive Information Retrieval. ISBN
1-4020-4013-X

James G. Shanahan, Yan Qu, Janyce Wiebe. Computing Attitude and Affect in Text:

Theory and Applications. ISBN 1-4020-4026-1

Marie-Francine Moens. Information Extraction, Algorithms and Prospects in a
Retrieval Context. ISBN 1-4020-4987-0

Maristella Agosti. Information Access through Search Engines and Digital Libraries.
ISBN 978-3-540-75133-5

Jin Zhang. Visualization for Information Retrieval. ISBN 978-3-540-75147-2

The Modern Algebra of Information Retrieval.
ISBN 978-3-540-77658-1
Sándor Dominich.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

